我为2015 FIFA女足世界杯提供了一些数据:
import pandas as pd
df = pd.DataFrame({
'team':['Germany','USA','France','Japan','Sweden','England','Brazil','Canada','Australia','Norway','Netherlands','Spain',
'China','New Zealand','South Korea','Switzerland','Mexico','Colombia','Thailand','Nigeria','Ecuador','Ivory Coast','Cameroon','Costa Rica'],
'group':['B','D','F','C','D','F','E','A','D','B','A','E','A','A','E','C','F','F','B','D','C','B','C','E'],
'fifascore':[2168,2158,2103,2066,2008,2001,1984,1969,1968,1933,1919,1867,1847,1832,1830,1813,1748,1692,1651,1633,1485,1373,1455,1589],
'ftescore':[95.6,95.4,92.4,92.7,91.6,89.6,92.2,90.1,88.7,88.7,86.2,84.7,85.2,82.5,84.3,83.7,81.1,78.0,68.0,85.7,63.3,75.6,79.3,72.8]
})
df.groupby(['group', 'team']).mean()
现在,我想生成一个新的数据框,其中包含来自group
的每个df
中的6种可能的配对或匹配,格式如下:
group team1 team2
A Canada China
A Canada Netherlands
A Canada New Zealand
A China Netherlands
A China New Zealand
A Netherlands New Zealand
B Germany Ivory Coast
B Germany Norway
...
这样做简洁明了的方法是什么?我可以在每个group
和team
中执行一系列循环,但我觉得应该使用pandas
和split-apply-combine范例以更清晰的矢量化方式来执行此操作。
编辑:我也欢迎任何R答案,认为在这里比较R和Pandas的方式会很有趣。添加了r
代码。
这是R形式的数据,如评论中所要求的那样:
team <- c('Germany','USA','France','Japan','Sweden','England','Brazil','Canada','Australia','Norway','Netherlands','Spain',
'China','New Zealand','South Korea','Switzerland','Mexico','Colombia','Thailand','Nigeria','Ecuador','Ivory Coast','Cameroon','Costa Rica')
group <- c('B','D','F','C','D','F','E','A','D','B','A','E','A','A','E','C','F','F','B','D','C','B','C','E')
fifascore <- c(2168,2158,2103,2066,2008,2001,1984,1969,1968,1933,1919,1867,1847,1832,1830,1813,1748,1692,1651,1633,1485,1373,1455,1589)
ftescore <- c(95.6,95.4,92.4,92.7,91.6,89.6,92.2,90.1,88.7,88.7,86.2,84.7,85.2,82.5,84.3,83.7,81.1,78.0,68.0,85.7,63.3,75.6,79.3,72.8)
df <- data.frame(team, group, fifascore, ftescore)
答案 0 :(得分:3)
这是两线解决方案:
import itertools
for grpname,grpteams in df.groupby('group')['team']:
# No need to use grpteams.tolist() to convert from pandas Series to Python list
print list(itertools.combinations(grpteams, 2))
[('Canada', 'Netherlands'), ('Canada', 'China'), ('Canada', 'New Zealand'), ('Netherlands', 'China'), ('Netherlands', 'New Zealand'), ('China', 'New Zealand')]
[('Germany', 'Norway'), ('Germany', 'Thailand'), ('Germany', 'Ivory Coast'), ('Norway', 'Thailand'), ('Norway', 'Ivory Coast'), ('Thailand', 'Ivory Coast')]
[('Japan', 'Switzerland'), ('Japan', 'Ecuador'), ('Japan', 'Cameroon'), ('Switzerland', 'Ecuador'), ('Switzerland', 'Cameroon'), ('Ecuador', 'Cameroon')]
[('USA', 'Sweden'), ('USA', 'Australia'), ('USA', 'Nigeria'), ('Sweden', 'Australia'), ('Sweden', 'Nigeria'), ('Australia', 'Nigeria')]
[('Brazil', 'Spain'), ('Brazil', 'South Korea'), ('Brazil', 'Costa Rica'), ('Spain', 'South Korea'), ('Spain', 'Costa Rica'), ('South Korea', 'Costa Rica')]
[('France', 'England'), ('France', 'Mexico'), ('France', 'Colombia'), ('England', 'Mexico'), ('England', 'Colombia'), ('Mexico', 'Colombia')]
说明:
首先,我们使用df.groupby('group')
获取每个小组内的小组的团队列表,并对其进行迭代并访问其小组&#39;系列,获取每组中4支球队的名单:
for grpname,grpteams in df.groupby('group')['team']:
teamlist = grpteams.tolist()
...
['Canada', 'Netherlands', 'China', 'New Zealand']
['Germany', 'Norway', 'Thailand', 'Ivory Coast']
['Japan', 'Switzerland', 'Ecuador', 'Cameroon']
['USA', 'Sweden', 'Australia', 'Nigeria']
['Brazil', 'Spain', 'South Korea', 'Costa Rica']
['France', 'England', 'Mexico', 'Colombia']
然后我们生成所有队列的元组列表。
David Arenburg的帖子提醒我使用itertools.combinations(..., 2)
。但我们可以使用生成器或嵌套for循环:
def all_play_all(teams):
for team1 in teams:
for team2 in teams:
if team1 < team2: # [Note] We don't need to generate indices then index into teamlist, just use direct string comparison
yield (team1,team2)
>>> [match for match in all_play_all(grpteams)]
[('France', 'Mexico'), ('England', 'France'), ('England', 'Mexico'), ('Colombia', 'France'), ('Colombia', 'England'), ('Colombia', 'Mexico')]
请注意,我们采用快捷方式首先生成所有可能的索引元组,然后使用这些索引编入团队列表:
>>> T = len(teamlist) + 1
>>> [(i,j) for i in range(T) for j in range(T) if i<j]
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
(注意:如果我们使用直接比较团队名称的方法,它会产生轻微的副作用(按字母顺序)使用组名(它们最初是按播种顺序排序,而不是按字母顺序排序),所以例如&# 39;中国&#39;荷兰&#39;所以他们的配对将显示为(&#39;荷兰&#39;中国&#39;)而不是(&#39;中国和#39;,荷兰&#39;))
答案 1 :(得分:3)
使用R,这是一个可能的$sql = "SELECT * FROM orders";
$result = mysql_query($sql);
if (!$result) {
echo "Could not successfully run query ($sql) from DB: " . mysql_error();
exit;
}
if (mysql_num_rows($result) == 0) {
echo "No rows found, nothing to print so am exiting";
exit;
}
session_id($id);
session_start();
echo $_SESSION['user_name'];
echo $row["product_order"];
解决方案,使用它在GitHub上的devel版本
data.table