rm(list=ls())
myData <-read.csv(file="C:/Users/Documents/myfile.csv",header=TRUE, sep=",")
for(i in names(myData))
{
colNum <- grep(i,colnames(myData)) ##asigns a value to each column
if(is.numeric(myData[3,colNum])) ##if row 3 is numeric, the entire column is
{
##print(nxeData[,i])
fit <- lm(myData[,i] ~ etch_source_Avg, data=myData) #does a regression for each column in my csv file against my independent variable 'etch'
rsq <- summary(fit)$r.squared
}
}
我正在为多个列做回归循环,并将它们与一个因变量列进行比较。我编写了大部分代码,但现在我不确定如何在包含该列名称的同时打印出每个列的R平方值与etch_source_Avg参数。理想情况下它会是这样的:
.765“变量名1”
.436“变量名2”......依此类推
答案 0 :(得分:1)
这里是对代码的快速重写,这应该可以为您提供所需内容。因为myData
应该是data.frame,所以不必为每列分配值,因此您可以使用它的列名访问每一列。
rm(list=ls())
myData <-read.csv(file="C:/Users/Documents/myfile.csv",header=TRUE, sep=",")
for(i in names(myData))
{
if(is.numeric(myData[3,i])) ##if row 3 is numeric, the entire column is
{
fit <- lm(myData[,i] ~ etch_source_Avg, data=myData) #does a regression for each column in my csv file against my independent variable 'etch'
rsq <- summary(fit)$r.squared
writelines(paste(rsq,i,"\n"))
}
}
希望这有帮助。