实现二叉搜索树(Python)

时间:2015-06-01 16:48:37

标签: python binary-search-tree

我的任务是对二进制搜索树执行一些基本操作,我不确定这是多么聪明的方法。

我知道通常的方法是为节点编写一个类,为树编写一个类,这样我就可以从给定的值构建我的树并在其上执行某些任务。问题是,我已经将树作为一个列表,因为BST不是唯一的,如果我自己采用每个值并构建树,就不会有任何好处。

所以...我得到一个这样的清单:

11 9 2 13 _, 4 18 2 14 _, 2 10 _ 11 4, 14 16 4 _ _, 13 0 11 _ _ | 10 | 7

表示:

key value parent left right, ... | value1 | value2

所以你看到明确给出了BST。我的任务是对树进行级别打印,将路径从root返回到value1,对具有rotate-right的子树执行value1操作,然后{ {1}}然后delete value1

解决这个问题的有效方法是什么?

3 个答案:

答案 0 :(得分:2)

这是实现树的一种可能方式。希望能帮助到你。虽然这包含插入和流行的遍历,而不是旋转或删除。

参考:http://www.thelearningpoint.net/computer-science/learning-python-programming-and-data-structures/learning-python-programming-and-data-structures--tutorial-20--graphs-breadth-and-depth-first-search-bfsdfs-dijkstra-algorithm-topological-search

'''
Binary Search Tree is a binary tree(that is every node has two branches), 
in which the values contained in the left subtree is always less than the
root of that subtree, and the values contained in the right subtree is
always greater than the value of the root of the right subtree.
For more information about binary search trees, refer to :
http://en.wikipedia.org/wiki/Binary_search_tree
'''
#Only for use in Python 2.6.0a2 and later
from __future__ import print_function
class Node:

    # Constructor to initialize data
    # If data is not given by user,its taken as None 
    def __init__(self, data=None, left=None, right=None):
        self.data = data
        self.left = left
        self.right = right

    # __str__ returns string equivalent of Object
    def __str__(self):
        return "Node[Data = %s]" % (self.data,)

class BinarySearchTree:
    def __init__(self):
        self.root = None

    '''
    While inserting values in a binary search tree, we first check
    whether the value is greater than, lesser than or equal to the
    root of the tree.
    We initialize current node as the root. 
    If the value is greater than the current node value, then we know that
    its right location will be in the right subtree. So we make the current
    element as the right node.

    If the value is lesser than the current node value, then we know that
    its right location will be in the left subtree. So we make the current
    element as the left node.

    If the value is equal to the current node value, then we know that the
    value is already contained in the tree and doesn't need to be reinserted.
    So we break from the loop.
    '''
    def insert(self, val):
        if (self.root == None):
            self.root = Node(val)
        else:
            current = self.root

            while 1:
                if (current.data > val):
                    if (current.left == None):
                        current.left = Node(val)
                        break
                    else:
                        current = current.left

                elif (current.data < val):
                    if (current.right == None):
                        current.right = Node(val)
                        break
                    else:
                        current = current.right

                else:
                    break
    '''
    In preorder traversal, we first print the current element, then
    move on to the left subtree and finally to the right subree.
    '''
    def preorder(self, node):
        if (node == None):
            return
        else:
            print(node.data, end=" ")
            self.preorder(node.left)
            self.preorder(node.right)
    '''
    In inorder traversal, we first move to the left subtree, then print
    the current element and finally move to the right subtree.
    '''

    #Important : Inorder traversal returns the elements in sorted form.
    def inorder(self, node):
        if (node == None):
            return
        else:
            self.inorder(node.left)
            print(node.data, end=" ")
            self.inorder(node.right)
    '''
    In postorder traversal, we first move to the left subtree, then to the
    right subtree and finally print the current element.
    '''
    def postorder(self, node):
        if (node == None):
            return
        else:
            self.postorder(node.left)
            self.postorder(node.right)
            print(node.data, end=" ")

tree = BinarySearchTree()
tree.insert(1)
tree.insert(9)
tree.insert(4)
tree.insert(3)
tree.insert(5)
tree.insert(7)
tree.insert(10)
tree.insert(0)
print ("Preorder Printing")
tree.preorder(tree.root)
print("\n\nInorder Printing")
tree.inorder(tree.root)
print("\n\nPostOrder Printing")
tree.postorder(tree.root)

答案 1 :(得分:1)

以下是二进制搜索树的实现及其基本操作,如插入节点,查找节点

class Node:
    def __init__(self,data):
        self.left = None
        self.right = None
        self.data = data

class BST:
    def __init__(self):
        self.root = None
    def set_root(self,data):
        self.root = Node(data)
    def insert_node(self,data):
        if self.root is None:
            self.set_root(data)
        else:
            n = Node(data)
            troot = self.root
            while troot:
                if data < troot.data:
                    if troot.left:
                        troot = troot.left
                    else:
                        troot.left = n
                        break
                else:
                    if troot.right:
                        troot = troot.right
                    else:
                        troot.right = n
                        break
    def search_node(self,data):
        if self.root is None:
            return "Not found"
        else:
            troot = self.root
            while troot:
                if data < troot.data:
                    if troot.left:
                        troot = troot.left
                        if troot.data == data:
                            return "Found"
                    else:
                        return "Not found"
                elif data > troot.data:
                    if troot.right:
                        troot = troot.right
                        if troot.data == data:
                            return "Found"
                    else:
                        return "Not found"
                else:
                    return "Found"

tree = BST()
tree.insert_node(10)
tree.insert_node(5)
tree.insert_node(20)
tree.insert_node(7)

print(tree.root.data)
print(tree.root.left.data)
print(tree.root.right.data)
print(tree.root.left.right.data)

print(tree.search_node(10))
print(tree.search_node(5))
print(tree.search_node(20))
print(tree.search_node(7))
print(tree.search_node(12))
print(tree.search_node(15))

输出:

10
5
20
7
Found
Found
Found
Found
Not found
Not found

答案 2 :(得分:0)

在这个特定情况下,我成功地使用字典作为数据类型来存储图形。键是node_key,值是包含节点属性的列表。通过这种方式,可以快速找到所需的节点及其所有属性。

我只是不确定是否有办法让它变得更快。