我必须证明~p→(q→r)≡ q→(pvr)
这是我到目前为止所做的:
q→(pvr)
≡(q→p)v(q→r)
≡ ~(q→p)→(q→r)
≡ (q^~p)→(q→r)
≡ q→(~qvr) v ~p→(q→r)
≡ ~qv(~qvr) v ~p→(q→r)
≡ (~qvr)v ~p→(q→r)
≡ (q→r) v [~p→(q→r)]
我该如何解决这个问题?
答案 0 :(得分:1)
~p→(q→r) <=> p v (q→r) <=> p v (~q v r) <=> p v ~q v r
q→(p v r) <=> ~q v (p v r) <=> ~q v p v r <=> p v ~q v r
这里我使用p→q <=> ~p v q
规则以及析取是关联和可交换的事实。