如何优化点阵产品的AVX实现?

时间:2015-05-31 19:31:02

标签: c visual-c++ simd avx dot-product

我试图使用AVX https://stackoverflow.com/a/10459028实现这两个数组的点积。但我的代码很慢。

Axb是双精度数组,n是偶数。你能帮助我吗?

const int mask = 0x31;
int sum =0;

for (int i = 0; i < n; i++)
{
    int ind = i;
    if (i + 8 > n) // padding
    {
        sum += A[ind] * xb[i].x;
        i++;
        ind = n * j + i;
        sum += A[ind] * xb[i].x;
        continue;
    }

    __declspec(align(32)) double ar[4] = { xb[i].x, xb[i + 1].x, xb[i + 2].x, xb[i + 3].x };
    __m256d x = _mm256_loadu_pd(&A[ind]);
    __m256d y = _mm256_load_pd(ar);
    i+=4; ind = n * j + i;
    __declspec(align(32)) double arr[4] = { xb[i].x, xb[i + 1].x, xb[i + 2].x, xb[i + 3].x };
    __m256d z = _mm256_loadu_pd(&A[ind]);
    __m256d w = _mm256_load_pd(arr);

    __m256d xy = _mm256_mul_pd(x, y);
    __m256d zw = _mm256_mul_pd(z, w);
    __m256d temp = _mm256_hadd_pd(xy, zw);
    __m128d hi128 = _mm256_extractf128_pd(temp, 1);
    __m128d low128 = _mm256_extractf128_pd(temp, 0);
    //__m128d dotproduct = _mm_add_pd((__m128d)temp, hi128);
    __m128d dotproduct = _mm_add_pd(low128, hi128);

    sum += dotproduct.m128d_f64[0]+dotproduct.m128d_f64[1];
    i += 3;
}

1 个答案:

答案 0 :(得分:2)

你的循环中存在两个显而易见的低效率:

(1)这两个标量代码块:

__declspec(align(32)) double ar[4] = { xb[i].x, xb[i + 1].x, xb[i + 2].x, xb[i + 3].x };
...
__m256d y = _mm256_load_pd(ar);

__declspec(align(32)) double arr[4] = { xb[i].x, xb[i + 1].x, xb[i + 2].x, xb[i + 3].x };
...
__m256d w = _mm256_load_pd(arr);

应该使用SIMD加载和混洗(或者至少使用_mm256_set_pd来实现,并让编译器有机会为收集的负载生成代码的半合理工作。)

(2)循环结束时的水平求和:

for (int i = 0; i < n; i++)
{
    ...
    __m256d xy = _mm256_mul_pd(x, y);
    __m256d zw = _mm256_mul_pd(z, w);
    __m256d temp = _mm256_hadd_pd(xy, zw);
    __m128d hi128 = _mm256_extractf128_pd(temp, 1);
    __m128d low128 = _mm256_extractf128_pd(temp, 0);
    //__m128d dotproduct = _mm_add_pd((__m128d)temp, hi128);
    __m128d dotproduct = _mm_add_pd(low128, hi128);

    sum += dotproduct.m128d_f64[0]+dotproduct.m128d_f64[1];
    i += 3;
}

应该移出循环:

__m256d xy = _mm256_setzero_pd();
__m256d zw = _mm256_setzero_pd();
...
for (int i = 0; i < n; i++)
{
    ...
    xy = _mm256_add_pd(xy, _mm256_mul_pd(x, y));
    zw = _mm256_add_pd(zw, _mm256_mul_pd(z, w));
    i += 3;
}
__m256d temp = _mm256_hadd_pd(xy, zw);
__m128d hi128 = _mm256_extractf128_pd(temp, 1);
__m128d low128 = _mm256_extractf128_pd(temp, 0);
//__m128d dotproduct = _mm_add_pd((__m128d)temp, hi128);
__m128d dotproduct = _mm_add_pd(low128, hi128);

sum += dotproduct.m128d_f64[0]+dotproduct.m128d_f64[1];