C ++如何生成函数重载的所有排列?

时间:2015-05-31 18:57:35

标签: c++ c++11 constructor-overloading

假设我有课程Date和课程YearMonthDay

struct Date {
  Date(Year year, Month month, Day day) : d(day), m(month), y(year) {};
  Date(Month month, Day day, Year year) : d(day), m(month), y(year) {};
  Date(Day day, Month month, Year year) : d(day), m(month), y(year) {};
  Date(Day day, Year year, Month month) : d(day), m(month), y(year) {};
  ...
  ...

  private:
    Day d;
    Month m;
    Year y;
}

这使我不会为Date设置特定的参数布局,因为我有很多过载。

我能自动生成所有排列/过载吗?

要明确:

  • 排列只是参数布局,不应该是它们 据我所知,改变是不可能实现自动化的。
  • 所有生成的重载应该只有相同的代码 参数的布局不会改变逻辑本身。

2 个答案:

答案 0 :(得分:39)

使用C ++ 14,您可以:

struct Date {
public:
    Date(const Year& year, const Month& month, const Day& day) :
        d(day), m(month), y(year)
    {}

    template <typename T1, typename T2, typename T3>
    Date(const T1& t1, const T2& t2, const T3& t3) : 
        Date(std::get<Year>(std::tie(t1, t2, t3)),
             std::get<Month>(std::tie(t1, t2, t3)),
             std::get<Day>(std::tie(t1, t2, t3)))
    {}

private:
    Day d;
    Month m;
    Year y;
};

修改 如果您还允许默认参数,您可以执行以下操作:

namespace detail
{
    template <typename T, typename... Ts> struct has_T;

    template <typename T> struct has_T<T> : std::false_type {};

    template <typename T, typename... Ts> struct has_T<T, T, Ts...>
    : std::true_type {};

    template <typename T, typename Tail, typename... Ts>
    struct has_T<T, Tail, Ts...> : has_T<T, Ts...> {};

    template <typename T, typename... Ts>
    const T& get_or_default_impl(std::true_type,
                                 const std::tuple<Ts...>& t,
                                 const T&)
    {
        return std::get<T>(t);
    }

    template <typename T, typename... Ts>
    const T& get_or_default_impl(std::false_type,
                                 const std::tuple<Ts...>&,
                                 const T& default_value)
    {
        return default_value;
    }

    template <typename T1, typename T2> struct is_included;

    template <typename... Ts>
    struct is_included<std::tuple<>, std::tuple<Ts...>> : std::true_type {};

    template <typename T, typename... Ts, typename ... Ts2>
    struct is_included<std::tuple<T, Ts...>, std::tuple<Ts2...>> :
        std::conditional_t<has_T<T, Ts2...>::value,
                          is_included<std::tuple<Ts...>, std::tuple<Ts2...>>,
                          std::false_type> {};

}

template <typename T, typename... Ts>
const T& get_or_default(const std::tuple<Ts...>& t,
                        const T& default_value = T{})
{
    return detail::get_or_default_impl<T>(detail::has_T<T, Ts...>{}, t, default_value);
}

然后

struct Date {
public:
    Date(const Year& year, const Month& month, const Day& day) :
        d(day), m(month), y(year)
    {}

    template <typename ... Ts,
              typename std::enable_if_t<
                  detail::is_included<std::tuple<Ts...>,
                  std::tuple<Year, Month, Day>>::value>* = nullptr>
    Date(const Ts&... ts) :
        Date(get_or_default<const Year&>(std::tie(ts...)),
             get_or_default<const Month&>(std::tie(ts...)),
             get_or_default<const Day&>(std::tie(ts...)))
    {}

private:
    Day d;
    Month m;
    Year y;
};

Live Demo
Live Demo with invalid constructor call

答案 1 :(得分:6)

在C ++ 14中,取3个泛型参数,将它们转发给元组,将该元组转发给新的构造函数(可能带有标记类型以辅助调度),并使用基于类型的std::get来exctract每种类型。将其转发给另一个构造函数,使用标记来帮助调度。

SFINAE检查提供早期故障可选。

struct Date {
private:
  struct as_tuple{};
  struct in_order{}; 
public:
  template<class A,class B,class C,
    // SFINAE test based on type_index below:
    class=decltype(
      type_index<Year,A,B,C>{}+type_index<Month,A,B,C>{}+type_index<Day,A,B,C>{}
    )
  >
  Date(A a,B b,C c):
    Date(as_tuple{},
      std::make_tuple(std::move(a),std::move(b),std::move(c))
    )
  {}
private:
  template<class...Ts>
  Date(as_tuple, std::tuple<Ts...> t):
    Date(in_order{},
      std::get<Year>(t),std::get<Month>(t),std::get<Day>(t)
    )
  {}
  Date(in_order,Year y_,Month m_,Day d_):
    y(y_),m(m_),d(d_)
  {}
};

在C ++ 11中,您可以实现自己的等效std::get<T>

SFINAE检查y / m / d是否全部存在更难,但可能不需要。

优化(添加移动/完美转发)是另一项改进,如果您的y / m / d类型足够简单,则可能不需要。

转发构造函数和标记的技术基于一次做一件事而不是一次完成的想法。代码已经足够奇怪了。

实施您自己的std::get<T>很简单。让SFINAE更加友好:

 // helpers to keep code clean:
 template<std::size_t n>
 using size=std::integral_constant<std::size_t, n>;
 template<class T>struct tag{using type=T;};

 template<class T, class...Ts>
 struct type_index_t{}; // SFINAE failure

 // client code uses this.  Everything else can go in namespace details:
 template<class T, class...Ts>
 using type_index = typename type_index_t<T,Ts...>::type;

 // found a match!
 template<class T, class...Ts>
 struct type_index_t<T, T, Ts...>:
   tag<size<0>>
 {};
 template<class T, class T0, class...Ts>
 struct type_index_t<T, T0, Ts...>:
   tag<size<type_index<T,Ts...>::value+1>>
 {};

// SFINAE (hopefully) std::get<T>:
template<class T, class...Ts>
auto my_get( std::tuple<Ts...>& tup )
-> decltype( std::get< type_index<T,Ts...>::value >(tup) ) {
  return std::get< type_index<T,Ts...>::value >(tup);
}
template<class T, class...Ts>
auto my_get( std::tuple<Ts...> const& tup )
-> decltype( std::get< type_index<T,Ts...>::value >(tup) ) {
  return std::get< type_index<T,Ts...>::value >(tup);
}
template<class T, class...Ts>
auto my_get( std::tuple<Ts...>&& tup )
-> decltype( std::get< type_index<T,Ts...>::value >(std::move(tup)) ) {
  return std::get< type_index<T,Ts...>::value >(std::move(tup));
}

但这只是一个未经测试的草图。查看C ++ 14 std::get<Type>的提议可能是一个更好的主意。