Prolog项目/谜题的结果不正确

时间:2015-05-29 17:16:16

标签: prolog maze

我在一个艰难的Prolog项目/谜题工作,但我找不到解决方案。 我会感谢任何帮助。

实践是通过迷宫来模拟和解决逻辑编程。 它包括房间,门和钥匙。当两个房间连接时,它们通过一个门连接,该门由一个或多个锁关闭,这需要打开以从一个房间移动到另一个房间。键和锁是模糊的,IE任何键都打开任何锁。打开门之后它总是打开,但是钥匙卡在锁中并且无法恢复(永远丢失),因此打开每扇门时他们将需要许多钥匙和锁。每个房间都有未使用的钥匙,可以收集这些钥匙以进一步打开新门。最初我们没有钥匙。

解决方案程序必须定义谓词camino / 3(camino是西班牙语的道路),如果AF,则XXF)为真根据停留时间通往房间A的道路,以便您可以随时使用相应的钥匙打开门。道路应按照交叉顺序列出房间名称(从F开始到e / 2结束)。

该程序将为每个会议室e (E , L )定义E表单的谓词L,其中p / 3是该会议室中包含的密钥数。您还为每个门定义了p (E1, E2 , C)形式的谓词C,其中E1是具有连接E2%rooms+ number of keys e(a,1). e(b,2). e(c,1). e(d,0). e(e,0). e(f,0). %Doors p(a,b,1). p(a,c,1). p(b,d,1). p(c,e,1). p(d,f,1). p(e,f,2). 个房间的门的锁的数量。该程序应保持房间的状态(如果他们有钥匙或没有)和门(如果已经打开或静止 在任何时候都被锁定。

一个例子是(Source):

?‐ camino(a,f,X). 
X = [a,b,a,c,d,f] ? 
yes 
?‐ camino(a,f,X). 
X = [a,c,d,f] ? 
yes 

结果应该是:

%CODE

% these are the rooms and the number of keys they contain
e(a,1).
e(b,2).
e(c,1).
e(d,0).
e(e,0). 
e(f,0).

%these are the doors and the number of keys needed to open them
p(a,b,1).
p(a,c,1).    
p(b,d,1).    
p(c,e,1).    
p(d,f,1).    
p(e,f,2).          

concatenate([],L,L).        
concatenate([X|M],L,[X|Y]) :-        
   concatenate(M,L,Y).

%%%%%%%%%%%%%
camino(A,F,X):-    
   A==F,                     %check if we start at the destiny    
   concatenate([],[F],X).    
%%%%%%%%%%%%%%%%%%%%%%%%%%    
camino(A,F,X):-    
   A\==F,                     %check if we dont start at the destiny    
   concatenate([],[A],R),    
   findRoad(A,F,0,R,X).    
%%%%%%%%%%%%%%%%%%
%TRUE if x is a road (list) that leads to room F starting from A
%
findRoad(A,F,K,R,X):-     %k is key ---  initial keys    
    addkey(A,K,L),        %L new key--- number of keys after we add the keys of the room    
    pickkey(A),           %we put the number of keys of the room to 0    
    passDoor(A,L,P,_),    %P is position-- position of the new room    
    opendoor(A,P),        %we put the number of keys needed to pass the door to 0    
    P == F,               %we check if we have finished    
    concatenate(R,[P],X). %we concatenate the destiny and end   
findRoad(A,F,K,R,X):-     %k is key ---  initial keys   
    addkey(A,K,L),        %L new key--- number of keys after we add the keys of the room    
    pickkey(A),           %we put the number of keys of the room to 0    
    passDoor(A,L,P,L2),   %P is position-- position of the new room   

    opendoor(A,P),        %we put the number of keys needed to pass the door to 0    
    P \== F,              %we check we haven't finished   
    concatenate(R,[P],R2),%we concatenate the path we have for the moment   
    findRoad(P,F,L2,R2,X).

addkey(A,K,L):-    
    e(A,N),    
    L is K+N.    

passDoor(A,L,P,L2):-    
    p(A,P,W),    
    L2 is L-W,    
    L2 >= 0.   
passDoor(A,L,P,L2):-   
    p(P,A,W),   
    L2 is L-W,    
    L2 >= 0.    

pickkey(A):-    
    e(A,_) = e(A,0).    

opendoor(A,P):-    
    p(A,P,_) = p(A,P,0).       
opendoor(A,P):-    
    p(P,A,_) = p(P,A,0).

这是我目前的代码。它找到了通往命运的道路,但这不正确。此外,我仍然没有应用剪辑,所以它只给我一个答案:

 Notification.requestPermission(function (permission) {
      // If the user accepts, let's create a notification
      if (permission === "granted") {
        //redirect using javascript here window.location
      }
    });

3 个答案:

答案 0 :(得分:0)

这是解决它的另一种尝试,但它会陷入无限循环

%房间+钥匙数量 E(A,1)。

E(B,2)。

E(C,1)。

E(d,0)。

E(即,0)。

E(女,0)。

%门

P(A,B,1)。

P(A,C,1)。

P(B,d,2)。

P(C,E,1)。

P(d,F,1)。

P(E,F,2)。

%实习课

串连([],L,L)。

连接([X | M],L,[X | Y]): -

    concatenate(M,L,Y).

路径(A,F,X): -

A ==楼

串连([],[F],X)。

路径(A,F,X): -

A \ ==楼

串连([],[A],R),

探路者(A,F,0,R,[],[] 的,X)。

%如果x是从A

开始通向房间F的道路(列表),则为TRUE

探路者(A,F,K,R,ROOM,DOOR,ROOM2,DOOR3,X): - %k是关键---初始键

    addkey(A,K,L,ROOM,ROOM2),     %L new key--- number of keys after we add the keys of the room 

    passDoor(A,L,P,_,DOOR,DOOR3),             %P is position-- position of the new room   

    P == F,                                 %we check if we have finished  

    concatenate([P],[R],X).               %we concatenate the destiny and end 

探路者(A,F,K,R,ROOM,DOOR,ROOM2,DOOR3,X): - %k是关键---初始键

    addkey(A,K,L,ROOM,ROOM2),      %L new key--- number of keys after we add the keys of the room 

    passDoor(A,L,P,L2,DOOR,DOOR3),%P=new room L2 = new Nº of keys

    P \== F,                               %we check we havent finished

    concatenate([R],[P],R2),            %we add the room we are to the path

    pathfinder(P,F,L2,R2,ROOM2,DOOR3,_,_,X).       %

addkey(A,K,L,间,房间): -

member(A,ROOM),             %checks if we hace visited the room

    L is K.                            % If so [ROOM] and Nº of keys wont change

addkey(A,K,L,ROOM,ROOM2): -

not(member(A,ROOM)),    %checks we havnt visited the room

    e(A,N),                           %we save the number of keys of the room in N

    L is K+N,                        %L is (Nº of previous keys)+ keys of the room

    concatenate([ROOM],[A],ROOM2). %we add A to the list of visited rooms

passDoor(A,L,P,L2,DOOR,DOOR): -

    member(p(A,P,_),DOOR),            %checks if you have passed that door

    L2 is L.                           %If you have allready passed it, the Nº of keys dont change

passDoor(A,L,P,L2,门,DOOR3): -

    not(member(p(A,P,_),DOOR)),        %checks that you havent passed that door

    p(A,P,W),                                     %checks the door exists

    L2 is L-W,                                   %we substract to our keys the Nº of keys needed

    L2 >= 0,                                        %checks the result is > 0

    concatenate([DOOR],[p(A,P,_)], DOOR2), %we add the door to the list of used doors

    concatenate([DOOR2],[p(P,A,_)], DOOR3). % we add both ways in case we need to go back

答案 1 :(得分:0)

一种方法,它不提供最佳路径(在房间之间的最小步骤数的意义上),但满足请求如下。主要规则是:

path( Orig, Dest, Res ) :-
   e( Orig, Keys ),
   nextDoor( Dest, [(Orig,Orig)], Keys, [_|OpenDoors] ), !,
   joinDoors( Orig, OpenDoors, [Orig], Res ), !.

这意味着,在使用初始房间的键初始化键数后,算法将决定门必须打开的顺序(nextDoor),第二个将在前一个列表中找到一扇门到隔壁的路径。

理念是:在给定的时刻,我们有一组敞开的门,以及通过这些敞开的门连接的一组房间。穿过开放式门和访问室的区域是免费的,门已经打开,访问过的房间还没有钥匙。因此,我们只关心决定哪一个是我们必须打开的隔壁。决定此门打开顺序的规则是:

nextDoor( Dest, OpenDoors, _, Res ) :-
  visitedRoom( Dest, OpenDoors ), 
  !,
  reverse( OpenDoors, Res ). 

nextDoor( Dest, OpenDoors, Keys, Res ) :-
  /* choice a visited room */
  visitedRoom( Room, OpenDoors ), 

  /* next door not yet open */
  door( Room, NextRoom, DoorCost ),
  \+ member( (Room,NextRoom), OpenDoors ),
  \+ member( (NextRoom,Room), OpenDoors ),

  /* we can open door ? */
  DoorCost =< Keys,

  /* do not open doors to rooms already visited */
  \+ visitedRoom( NextRoom, OpenDoors ),

  /* ok, cross door and next one */
  e( NextRoom, RoomAward ),
  Keys2 is Keys-DoorCost+RoomAward,
  nextDoor( Dest, [(Room,NextRoom)|OpenDoors], Keys2, Res ).

使用两个实用程序,一个用于提供双向路径:

door(From,To,Cost) :-
  ( p(From,To,Cost); p(To,From,Cost) ).

另一个找到已经访问过的房间(通过敞开的门连接的房间)的房间:

visitedRoom( Room, OpenDoors ) :-
  ( member( (_,Room), OpenDoors ); member( (Room,_), OpenDoors ) ).

第二步是按照上一个订单从一扇门进入隔壁。

joinDoors( _, [], Path, Res ) :-
   reverse( Path, Res ).
joinDoors( CurrentRoom, [ (RoomBeforeDoor, RoomAfterRoom ) | Q ], Path, Res ) :-
   roomToRoom( CurrentRoom, RoomBeforeDoor, [], Path2 ),
   append( Path2, Path, Path3 ),
   joinDoors( RoomAfterRoom, Q, [RoomAfterRoom|Path3], Res ).

其中roomToRoom是一种用于查找路径的分类算法(TODO:optimize以查找最短路径):

roomToRoom( DestRoom, DestRoom, Path, Path ) :- !.
roomToRoom( CurrentRoom, DestRoom, Path, Res ) :-
  door( CurrentRoom, NextRoom, _ ),
  \+ member( NextRoom, Path ),
  roomToRoom( DestRoom, NextRoom, [NextRoom|Path], Res ).

如果我们尝试使用示例中提供的数据:

e(a,1).
e(b,2).
e(c,1).
e(d,0).
e(e,0).
e(f,0).

p(a,b,1).
p(a,c,1).
p(b,d,2). /* corrected */
p(c,d,1). /* add */
p(c,e,1).
p(d,f,1).
p(e,f,2).

结果是:

?- path(a,f,Path).
Path = [a, b, a, c, d, f].

答案 2 :(得分:0)

为了确保获得最短路径,您可以使用BFS搜索:

:- use_module(library(lambda)).

%rooms + number of keys
e(a,1).
e(b,2).
e(c,1).
e(d,0).
e(e,0).
e(f,0).

%Doors
p(a,b,1).
p(a,c,1).
p(b,d,2).
p(c,d,1).
p(c,e,1).
p(d,f,1).
p(e,f,2).

% Doors are closed at the beginning of the puzzle
% state(CurrentRoom, NumberKeys, StateRooms, StateDoors)
init(state(a, 0, LstRooms, LstDoors)) :-
    setof(e(X,Y), X^Y^e(X,Y), LstRooms),
    setof(p(X,Y,Z, closed), X^Y^Z^p(X,Y,Z), LstDoors).

% final state
final(state(f, _, _, _)).

% skeleton of BFS search
:- dynamic(states/1).
puzzle :-
    retractall(states(_)),
    % set the initial state
    init(State),
    assert(states([[State]])),
    repeat,
        nextstates,
    % if we get to the final state,
    % eneded/1 succeeds with a path
    ended(Path),
    maplist(writeln, Path).

% test if we have finished the puzzle
% succeeds with a Path to the solution
% This BFS gives a reverse path to the solution
ended(Path) :-
    final(State),
    states(LstStates),
    % may be there is no solution ?
    (   LstStates = []
    ->  Path = []
    ;   include(=([State|_]), LstStates, Paths),
        Paths = [RPath|_],
        reverse(RPath, Path)).

nextstates :-
    retract(states(LstStates)),
    foldl(\States^Y^Z^(nextstates_one(States, NewStates),
               append(Y, NewStates, Z)),
          LstStates, [], LstNewStates),
        assert(states(LstNewStates)).

% First we search the rooms near the current room
% Next we build the new paths
nextstates_one([Head | Tail], NewStates) :-
    nextrooms(Head, LState),
    foldl([Head, Tail] +\X^Y^Z^(member(X, Tail)
             ->  Z = Y
             ;   append([[X, Head | Tail]], Y, Z)),
          LState, [], NewStates),
    % we must put a cut here,
    % if **ended(Path)** fails, we must continue at **repeat**
    !.

% fetch all the rooms near the current room
nextrooms(state(R, K, SR, SD), States) :-
    % we fetch keys (even when there is no more keys left !)
    select(e(R, Key), SR, TSR),
    NK is K + Key,
    sort([e(R, 0) | TSR], NSR),
    % we test all the doors
    foldl([R,NK,NSR,SD]+\X^Y^Z^(X = p(R1, R2, Keys, Open),
                    % can we go to the next door ?
                   (   select(R, [R1,R2], [NR])
                   -> (    Open = opened
                       % the door is opened, we came in without changint anything
                       ->  Z = [state(NR, NK, NSR, SD) | Y]
                       % the door is closed, have we enough keys ?
                       ;   (   Keys =< NK
                        ->  NK1 is NK - Keys,
                            select(p(R1, R2, Keys, Open), SD, TSD),
                        sort([p(R1, R2, 0, opened) | TSD], NSD),
                        Z = [state(NR, NK1, NSR, NSD) | Y]
                        ;   Z = Y))
                   ;  Z = Y)),
          SD, [], States).