我正在进行某种光学字符识别并面临以下问题。我将字形存储在二进制矩阵列表中,它们可以具有不同的大小,但它们的最大可能宽度为wid = 3
列(可以是任何已定义的常量,而不仅仅是3)。在某些情况下,在第一阶段处理后,我得到的数据如下:
myll <- list(matrix(c(0, 0, 0, 1, 1, 0), ncol = 2),
matrix(c(0), ncol = 1),
matrix(c(1, 1, 0), ncol = 3),
matrix(c(1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), ncol = 7),
matrix(c(1, 1, 1, 1), ncol = 2))
# [[1]]
# [,1] [,2]
# [1,] 0 1
# [2,] 0 1
# [3,] 0 0
#
# [[2]]
# [,1]
# [1,] 0
#
# [[3]]
# [,1] [,2] [,3]
# [1,] 1 1 0
#
# [[4]]
# [,1] [,2] [,3] [,4] [,5] [,6] [,7]
# [1,] 1 1 1 0 0 0 1
# [2,] 0 1 0 1 0 0 1
# [3,] 1 1 1 1 0 0 1
#
# [[5]]
# [,1] [,2]
# [1,] 1 1
# [2,] 1 1
因此,某些字形可能由于某些原因而未被分开。只有最大可能宽度的字形才会发生这种情况。而且,矩阵末尾可能有一些垃圾。我必须把它们分成宽度为ncol = wid
的矩阵,留下最后一块(垃圾)。然后我将这个矩阵存储在列表的单独元素中以获得以下输出:
# [[1]]
# [,1] [,2]
# [1,] 0 1
# [2,] 0 1
# [3,] 0 0
#
# [[2]]
# [,1]
# [1,] 0
#
# [[3]]
# [,1] [,2] [,3]
# [1,] 1 1 0
#
# [[4]]
# [,1] [,2] [,3]
# [1,] 1 1 1
# [2,] 0 1 0
# [3,] 1 1 1
#
# [[5]]
# [,1] [,2] [,3]
# [1,] 0 0 0
# [2,] 1 0 0
# [3,] 1 0 0
#
# [[6]]
# [,1]
# [1,] 1
# [2,] 1
# [3,] 1
#
# [[7]]
# [,1] [,2]
# [1,] 1 1
# [2,] 1 1
目前我可以借助这个功能来实现它
checkGlyphs <- function(gl_m, wid = 3) {
if (ncol(gl_m) > wid)
return(list(gl_m[,1:wid], matrix(gl_m[,-(1:wid)], nrow = nrow(gl_m)))) else
return(gl_m)
}
separateGlyphs <- function(myll, wid = 3) {
require("magrittr")
presplit <- lapply(myll, checkGlyphs, wid)
total_new_length <-
presplit[unlist(lapply(presplit, is.list))] %>% lapply(length) %>% unlist() %>% sum() +
as.integer(!unlist(lapply(presplit, is.list))) %>% sum()
splitted <- vector("list", length = total_new_length)
spl_index <- 1
for (i in 1:length(presplit))
{
if (!is.list(presplit[[i]]))
{
splitted[[spl_index]] <- presplit[[i]]
spl_index <- spl_index + 1
} else
{
for (j in 1:length(presplit[[i]]))
{
splitted[[spl_index]] <- presplit[[i]][[j]]
spl_index <- spl_index + 1
}
}
}
if (any(lapply(splitted, ncol) > wid)) return(separateGlyphs(splitted, wid)) else
return(splitted)
}
但是我相信有更快速和方便的方法来实现相同的结果(不使用for
循环和这个enlooped重新分配元素然后递归,如果需要O_o)。
我会感谢任何关于这一点的建议,或者为R推荐一些OCR包。
答案 0 :(得分:0)
这应该可以解决问题,final
中的值就是你所追求的。
combined <- do.call(cbind, lapply(myll, unlist))
idx <- seq(1, ncol(combined), 2)
final <- do.call(list, lapply(idx, function(x) combined[, x:(x+1)]))