我有以下数据框
structure(list(X1 = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L), .Label = c("1", "2", "3"), class = "factor"),
V1 = c(1, NA, 1, 0, NA, NA, NA, NA, NA, NA, NA, NA), V2 = c(NA,
NA, NA, NA, 0, 0.25, 0.5, 1, NA, NA, NA, NA), V3 = c(NA,
NA, NA, NA, NA, NA, NA, NA, 0, 0.125, 0.75, 1)), .Names = c("X1",
"V1", "V2", "V3"), row.names = c(NA, -12L), class = "data.frame")
我希望df是这样的:
structure(list(X1 = c(1L, 1L, 1L, 1L), V1 = c(1L, NA, 1L, 0L),
V2 = c(0, 0.25, 0.5, 1), V3 = c(0, 0.125, 0.75, 1)), .Names = c("X1",
"V1", "V2", "V3"), class = "data.frame", row.names = c("1", "2",
"3", "4"))
我的想法是选择列,联合NA并绑定列。但是在集合中有一些东西,有些东西告诉我这个想法不起作用/是很长的路。
问)重塑df的最佳方法是什么?
谢谢!
答案 0 :(得分:0)
尝试
res <- data.frame(X1=1, sapply(df1[-1], function(x) {
indx <- which(!is.na(x))
x[min(indx):max(indx)]}))
res
# X1 V1 V2 V3
#1 1 1 0.00 0.000
#2 1 NA 0.25 0.125
#3 1 1 0.50 0.750
#4 1 0 1.00 1.000
答案 1 :(得分:0)
也许您可以考虑pmax
和split
,如下所示:
as.data.frame(split(do.call(pmax, c(mydf[-1], na.rm = TRUE)), mydf$X1))
# X1 X2 X3
# 1 1 0.00 0.000
# 2 NA 0.25 0.125
# 3 1 0.50 0.750
# 4 0 1.00 1.000
如果您确实需要一列,可以使用cbind
轻松添加。{/ p>