我正在尝试将以下两个问题的答案结合起来:
Reactive subset in ddply for rmarkdown shiny
Maintain data frame rows after subet
在第一个问题中,我展示了如何在闪亮/ rmarkdown中正确使用反应子集。我第二次向我展示了如何使用dplry汇总我的数据以计算%收益率。现在我尝试使用带有反应函数的dplry,这样我的%yield就会受到用户输入的影响。我几乎在那里,但得到一个错误的“未使用的参数”然后是一个数字列表。这是一个例子:
---
title: "Yield5"
author: "P Downs"
date: "Tuesday, May 26, 2015"
output: html_document
runtime: shiny
---
# Create user input for reactive subsetting
```{r echo=FALSE}
sliderInput("Meas_L", label = "Measure lower bound:",
min=2, max=9, value=3, step=0.1)
sliderInput("Meas_U", label = "Measure upper bound:",
min=2, max=9, value=8, step=0.1)
# create reactive variables for use in subsetting below
ML <- reactive({input$Meas_L})
MU <- reactive({input$Meas_U})
```
# Create example data frame. Measurement is grouped by batch and ID number
```{r echo=FALSE, message=FALSE}
library(plyr)
library(ggplot2)
library(dplyr)
set.seed(10)
Measurement <- rnorm(1000, 5, 2)
ID <- rep(c(1:100), each=10)
Batch <- rep(c(1:10), each=100)
df <- data.frame(Batch, ID, Measurement)
df$ID <- factor(df$ID)
df$Batch <- factor(df$Batch)
# function used to count number of "passed" data based on user input from sliders i.e. how many data points are between ML and MU
countFunc <- reactive({ function(x) sum( (x > ML()) & (x < MU()) )})
# user dplyr to produce summary of count for: total data, passed data, then calculate % yield
totals <- reactive({
df %>% group_by(Batch, ID) %>%
summarize(total = length(Measurement), x = countFunc(Measurement)) %>%
mutate(Yield = (x/total)*100) %>%
as.data.frame()
})
# Plot yield by against ID number grouped by batch
renderPlot({ggplot(totals(), aes(ID, Yield, colour=Batch)) + geom_point() +
scale_y_continuous(limits=c(0,100))})
我无法理解为什么函数中有一个未使用的参数?我最终想要将函数扩展到更多的一个变量,但我将保存另一天!
答案 0 :(得分:2)
reactive
不是函数,您无法将参数传递给reactive
。您的功能countFunc
应该是function
,而不是reactive
。然后使用适当的(无效)值调用函数。
countFunc <- function(x, ml, mu) sum( (x > ml) & (x < mu) )
totals <- reactive({
df %>% group_by(Batch, ID) %>%
summarize(total = length(Measurement), x = countFunc(Measurement, ML(), MU())) %>%
mutate(Yield = (x/total)*100) %>%
as.data.frame()
})