我写了一个函数来从回归结果中绘制CI的森林图。
我向函数提供了一个带有预测标签($ label),估计($ coef),低和高CI($ ci.low,$ ci.high),样式($ style)的data.frame:
structure(list(label = structure(c(9L, 4L, 8L, 2L, 6L, 10L, 3L,
7L, 1L, 5L), .Label = c(" - frattura esposta", " - frattura esposta 2",
" - lembo di perone vs lembo corticoperiostale", " - lembo di perone vs lembo corticoperiostale 2",
" - sesso maschile vs femminile", " - sesso maschile vs femminile 2",
" - trauma bassa energia", " - trauma bassa energia 2",
"Tempo di guarigione 2:", "Tempo di guarigione:"), class = "factor"),
coef = c(NA, 0.812, 0.695, 1.4, 0.682, NA, 0.812, 0.695,
1.4, 0.682), ci.low = c(NA, 0.405, 0.31, 1.26, 0.0855, NA,
0.405, 0.31, 1.26, 0.0855), ci.high = c(NA, 1.82, 0.912,
2.94, 1.01, NA, 1.82, 0.912, 2.94, 1.01), style = structure(c(1L,
2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L), .Label = c("bold", "plain"
), class = "factor")), .Names = c("label", "coef", "ci.low",
"ci.high", "style"), class = "data.frame", row.names = c(NA,
-10L))
我希望在估算值周围显示CI,并在可能的情况下对预测变量进行分组。为了第一个目标,我翻转了轴并使用了误差条;对于后者,我在数据框中创建了具有标签而非值的行。它成功了:
第一个问题: 正如您所看到的,分组标签是粗体,并且没有任何数据关联。 样式(正常或粗体)在样式列中定义(我计划将其自动化)。问题是,只有当所有标签都不同时才会起作用(请注意我在第一个图表中添加了#34; 2"以使它们不同);带有重复标签的行只显示为空格:
我从"创伤低音能量中移除了2#"标签,它消失了。 (也是风格混乱)。
我想找到一个分组解决方案,甚至与我的实现完全不同但没有相同名称的问题。
第二个问题: 正如你在两个图像中看到的那样,较低的CI条与零点相交,即Odds Ratios(并且在我使用的数据框中给出了数字),这是不可能的。
这是我的代码:
forest.plot <- function(d, xlab = "Coefficients", ylab = "", exp = T, bars = T, lims = NULL){
require(ggplot2)
boundary <- 0
text.pos <- -1.5
if(is.null(lims)) lims <- c(min(d$ci.low, na.rm = T), max(d$ci.high, na.rm = T))
p <- ggplot(d, aes(x=label, y=coef), environment = environment()) +
coord_flip()
if (exp == T){
p <- p + scale_y_log10(labels = round)
boundary <- 1
if(xlab == 'Coefficients') xlab <- 'Odds Ratios'
}
p <- p + geom_hline(yintercept = boundary, lty=2, col = 'darkgray', lwd = 1)
if (bars == T) {
text.pos <- -2
p <- p +
geom_bar(aes(fill = coef > boundary), stat = "identity", width = .3) +
geom_errorbar(aes(ymin = ci.low, ymax = ci.high, lwd = .5), colour = "dodgerblue4", width = 0.05)
}
else p <- p + geom_errorbar(aes(colour = coef > boundary, ymin = ci.low, ymax = ci.high, width = .05, lwd = .5))
if (!is.null(d$style)) style <- d[['style']] else style <- rep('plain', nrow(d))
p <- p + geom_point(colour = 'dodgerblue4', aes(size = 2)) +
scale_x_discrete(limits=rev(d$label)) +
geom_text(aes(label = coef, vjust = text.pos)) +
theme_bw() +
theme(axis.text.x = element_text(color = 'gray30', size = 16),
axis.text.y = element_text(face = rev(style), color = 'gray30', size = 14, hjust=0, angle=0),
axis.title.x = element_text(size = 20, color = 'gray30', vjust = 0),
axis.ticks = element_blank(),
legend.position="none",
panel.border = element_blank()) +
geom_vline(xintercept = 0, lwd = 2) +
ylab(xlab) +
xlab(ylab)
return(p)
}
答案 0 :(得分:3)
您可以通过创建两个ggplot
个对象并通过gridExtra::grid.draw
将它们组合在一起来获得所需的结果。
设置
library(ggplot2)
library(gridExtra)
library(grid)
regression_results <-
structure(list(label = structure(c(9L, 4L, 8L, 2L, 6L, 10L, 3L, 7L, 1L, 5L),
.Label = c(" - frattura esposta", " - frattura esposta 2", " - lembo di perone vs lembo corticoperiostale", " - lembo di perone vs lembo corticoperiostale 2", " - sesso maschile vs femminile", " - sesso maschile vs femminile 2", " - trauma bassa energia", " - trauma bassa energia 2", "Tempo di guarigione 2:", "Tempo di guarigione:"),
class = "factor"),
coef = c(NA, 0.812, 0.695, 1.4, 0.682, NA, 0.812, 0.695, 1.4, 0.682),
ci.low = c(NA, 0.405, 0.31, 1.26, 0.0855, NA, 0.405, 0.31, 1.26, 0.0855),
ci.high = c(NA, 1.82, 0.912, 2.94, 1.01, NA, 1.82, 0.912, 2.94, 1.01),
style = structure(c(1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L),
.Label = c("bold", "plain"), class = "factor")),
.Names = c("label", "coef", "ci.low", "ci.high", "style"),
class = "data.frame",
row.names = c(NA, -10L))
# Set a y-axis value for each label
regression_results$yval <- seq(nrow(regression_results), 1, by = -1)
建立森林情节
# Forest plot
forest_plot <-
ggplot(regression_results) +
theme_bw() +
aes(x = coef, xmin = ci.low, xmax = ci.high, y = yval) +
geom_point() +
geom_errorbarh(height = 0.2, color = 'red') +
geom_vline(xintercept = 1) +
theme(
axis.text.y = element_blank(),
axis.title.y = element_blank(),
axis.ticks.y = element_blank(),
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank(),
panel.border = element_blank()
) +
ylim(0, 10) +
xlab("Odds Ratio")
制作标签图
# labels, could be extended to show more information
table_plot <-
ggplot(regression_results) +
theme_bw() +
aes(y = yval) +
geom_text(aes(label = gsub("\\s2", "", label), x = 0), hjust = 0) +
theme(
axis.text = element_blank(),
axis.title = element_blank(),
axis.ticks = element_blank(),
panel.grid = element_blank(),
panel.border = element_blank()
) +
xlim(0, 6) +
ylim(0, 10)
制作剧情
# build the plot
png(filename = "so-example.png", width = 8, height = 6, units = "in", res = 300)
grid.draw(gridExtra:::cbind_gtable(ggplotGrob(table_plot), ggplotGrob(forest_plot), size = "last"))
dev.off()