我想计算倒圆的半径。
我设法实现了一切,但经过几个小时的挣扎后,我找不到计算正确反转半径的公式。
有关圆形反转的详细信息:
到目前为止我的代码:http://codepen.io/rafaelcastrocouto/pen/Mwjdga
它似乎有效,但你可以很容易地说它是完全错误的。
var c = $('#c'),
b = $('body'),
canvas = c[0],
ctx = canvas.getContext('2d'),
pi = Math.PI,
r = 100,
mr = 30,
width, height, hw, hh;
var setup = function() {
width = b.width();
height = b.height();
hw = width/2;
hh = height/2;
canvas.width = width;
canvas.height = height;
mid();
};
var mid = function() {
circle(hw,hh,0.25);
circle(hw,hh,r);
}
var circle = function(x,y,r) {
ctx.beginPath();
ctx.arc(x,y,r,0,pi*2);
ctx.stroke();
ctx.closePath();
};
var move = function(evt) {
var x = evt.clientX,
y = evt.clientY;
ctx.clearRect(0,0,width,height);
mid();
circle(x,y,mr);
var dx = x-hw,
dy = y-hh,
d = dist(dx,dy),
nd = r*r/d,
nx = dx*nd/d,
ny = dy*nd/d,
nr = mr*mr*pi/d; // whats the correct formula?
console.log(nr);
circle(nx+hw, ny+hh, nr);
};
var dist = function(x,y) {
return Math.pow(x*x + y*y, 1/2);
};
$(setup);
$(window).resize(setup);
$(window).mousemove(move);
需要数学专家的帮助!
答案 0 :(得分:1)
正如您所说,倒转一个圆的中心不会给您另一个圆的中心。同样,如果我们反转一个圆的两个相反的点,这并不意味着它们将成为反转圆上的相对点。 由于三个点描述了一个唯一的圆,我们可以使用它们找到反圆的方程。这给了我们倒圆的中心。然后,我们可以找到从中心到倒立点之一的距离,即半径。
以下c ++代码给出了中心。 (我不懂javascript)。函数v.norm2()给出向量v的平方范数。
Vector2D getcircle(Vector2D p1, Vector2D p2, Vector2D p3){
Vector2D result;
long double div = 2*(p1.x*(p2.y-p3.y)-p1.y*(p2.x-p3.x)+p2.x*p3.y-p3.x*p2.y);
result.x = (p1.norm2()*(p2.y-p3.y)+p2.norm2()*(p3.y-p1.y)+p3.norm2()*(p1.y-p2.y))/div;
result.y = (p1.norm2()*(p3.x-p2.x)+p2.norm2()*(p1.x-p3.x)+p3.norm2()*(p2.x-p1.x))/div;
return result;
}
因此,如果您有一个半径为r的圆c,并且正对另一个半径为R的圆C求逆,则可以执行类似的操作
float getRadius(Vector2D C, float R, Vector2D c, float r){
Vector2D p1 = Vector2D(c.x + r, c.y).invert(C, R);
Vector2D p2 = Vector2D(c.x - r, c.y).invert(C, R);
Vector2D p3 = Vector2D(c.x, c.y + r).invert(C, R);
return (getcircle(p1, p2, p3) - p1).norm();
}
这是一个以中心(130,-130)和半径为128的圆的图像,并且相对于另一个以中心(0,0)和半径为40的圆(未显示)反转。 大圆圈上的红点是相反的极性。然后将它们反转,并显示在小圆圈上,在其中您可以看到它们不是相反的对立面。
答案 1 :(得分:0)
我的错误是我假设倒圆的中心也尊重OP x OP'= r 2 ,但如下图所示,它显然没有。解决方案是计算圆上的两个点并反映每个点,然后使用这些点之间的距离的一半来找到半径。
所以这是正确的代码:
var c = $('#c'),
b = $('body'),
canvas = c[0],
ctx = canvas.getContext('2d'),
fixedRadius = 100,
saved = [],
width, height,
half = {
w: 0,
h: 0
},
mouse = {
r: 31,
x: 0,
y: 0
},
reflect = {
x: 0,
y: 0,
r: 0
};
var setup = function() {
width = b.width();
height = b.height();
half.w = width/2;
half.h = height/2;
canvas.width = width;
canvas.height = height;
move();
};
var mid = function() {
circle(half.w,half.h,1.5);
circle(half.w,half.h,fixedRadius);
};
var circle = function(x,y,r,c) {
ctx.strokeStyle = c || 'black';
ctx.beginPath();
ctx.arc(x,y,r,0,Math.PI*2);
ctx.stroke();
ctx.closePath();
};
var line = function(x1,y1,x2,y2,c) {
ctx.strokeStyle = c || 'black';
ctx.beginPath();
ctx.moveTo(x1,y1);
ctx.lineTo(x2,y2);
ctx.stroke();
ctx.closePath();
};
var axis = function () {
line(half.w,0,half.w,height,'#ccc');
line(0,half.h,width,half.h,'#ccc');
};
var move = function(evt) {
mouse.x = evt ? evt.clientX : half.w;
mouse.y = evt ? evt.clientY : half.h + 11;
ctx.clearRect(0,0,width,height);
axis();
mid();
circle(mouse.x,mouse.y,mouse.r);
circle(mouse.x,mouse.y,1,'grey');
var di = {
x: mouse.x - half.w, // orange
y: mouse.y - half.h // green
}
di.v = dist(di.x,di.y);
var a = Math.atan2(di.y,di.x); // angle
line(mouse.x - di.x,mouse.y,mouse.x,mouse.y,'orange');
line(mouse.x,mouse.y - di.y,mouse.x,mouse.y,'green');
var p1 = {
v: di.v + mouse.r // cyan
};
p1.x = half.w + (Math.cos(a) * p1.v);
p1.y = half.h + (Math.sin(a) * p1.v);
circle(p1.x,p1.y,1.5,'cyan');
var p2 = {
v: di.v - mouse.r // red
};
p2.x = half.w+Math.cos(a)*p2.v;
p2.y = half.h+Math.sin(a)*p2.v;
circle(p2.x,p2.y,1.5,'red');
var rp1 = {
v: Math.pow(fixedRadius,2) / p1.v // cyan
};
rp1.x = Math.cos(a) * rp1.v,
rp1.y = Math.sin(a) * rp1.v;
circle(rp1.x+half.w,rp1.y+half.h,1.5,'cyan');
var rp2 = {
v: Math.pow(fixedRadius,2) / p2.v // red
};
rp2.x = Math.cos(a) * rp2.v,
rp2.y = Math.sin(a) * rp2.v;
circle(rp2.x+half.w,rp2.y+half.h,1.5,'red');
var newDi = {
v: dist(rp1.x - rp2.x, rp1.y - rp2.y)
};
newDi.r = newDi.v/2,
newDi.x = rp1.x + (Math.cos(a) * newDi.r), // yellow
newDi.y = rp1.y + (Math.sin(a) * newDi.r); // purple
if (p2.v < 0) {
newDi.x = rp1.x - (Math.cos(a) * newDi.r),
newDi.y = rp1.y - (Math.sin(a) * newDi.r);
}
reflect.x = half.w+newDi.x;
reflect.y = half.h+newDi.y
// reflected lines
if (di.v<fixedRadius) line(rp1.x+half.w,rp1.y+half.h,p1.x,p1.y,'cyan');
else line(rp2.x+half.w,rp2.y+half.h,p2.x,p2.y,'red');
line(p1.x,p1.y,half.w,half.h,'#ccc');
line(rp2.x+half.w,rp2.y+half.h,half.w,half.h,'#ccc');
line(reflect.x-newDi.x,reflect.y,reflect.x,reflect.y,'yellow');
line(reflect.x,reflect.y-newDi.y,reflect.x,reflect.y,'purple');
// reflected circle
circle(reflect.x, reflect.y, newDi.r);
circle(reflect.x,reflect.y,1,'grey');
circles(); // saved circles
reflect.r = newDi.r;
};
var dist = function(x,y) {
return Math.pow(x*x + y*y, 1/2);
};
var scroll = function(evt) {
if(evt.originalEvent.wheelDelta > 0) {
mouse.r++;
} else {
mouse.r--;
}
move(evt);
};
var click = function(evt) {
saved.push(['c',mouse.x,mouse.y,mouse.r]);
saved.push(['c',reflect.x,reflect.y,reflect.r]);
saved.push(['l',mouse.x,mouse.y,reflect.x,reflect.y]);
};
var circles = function() {
for(var i = 0; i < saved.length; i++) {
var s = saved[i];
if (s[0]=='c') circle(s[1],s[2],s[3],'grey');
if (s[0]=='l') line(s[1],s[2],s[3],s[4],'grey');
}
};
$(setup);
$(window)
.on('resize', setup)
.on('mousemove', move)
.on('mousewheel', scroll)
.on('click', click);
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<canvas id="c"></canvas>