如何避免循环减少此代码的计算时间?

时间:2015-05-22 20:34:06

标签: matlab matrix runtime vectorization

如何避免循环减少此代码的计算时间(one solution of my last question):

我希望找到A(1:3,:)的列向量,其M(4,:)中的对应值不属于单元格X的一个向量的一部分(显然不等于其中一个矢量)。如果X非常大,我会寻找快速解决方案。

M = [1007  1007  4044  1007  4044  1007  5002 5002 5002 622 622;
      552   552   300   552   300   552   431  431  431 124 124; 
     2010  2010  1113  2010  1113  2010  1100 1100 1100  88  88;
        7    12    25    15    12    30     2   10   55  32  12];

我直接点A

A = [1007  4044  5002  622;
      552   300   431  124;
     2010  1113  1100   88];

A包含M(1:3,:)

的唯一列向量
X = {[2 5 68 44],[2 10 55 9 17],[1 55 6 7 8 9],[32 12]};

[~, ~, subs] = unique(M(1:3,:)','rows');

A4 = accumarray(subs(:),M(4,:).',[],@(x) {x});

%// getting a mask of which columns we want
idxC(length(A4)) = false;
for ii = 1:length(A4)
    idxC(ii) = ~any(cellfun(@(x) all(ismember(A4{ii},x)), X));
end

显示我们想要的列

out = A(:,idxC)

结果:

>> out

out =

    1007        4044
     552         300
    2010        1113

已删除列向量[5002;431;1100],因为[2;10;55]中包含X{2} = [2 10 55 9 17]

已删除列向量[622;124;88],因为[32 12] = X{4}

另一个例子:,具有相同的X

    M = [1007  4044  1007  4044  1007  5002 5002 5002 622 622  1007  1007  1007;
          552   300   552   300   552   431  431  431 124 124   552    11    11; 
         2010  1113  2010  1113  2010  1100 1100 1100  88  88  2010    20    20;
           12    25    15    12    30     2   10   55  32  12     7    12     7];

X = {[2 5 68 44],[2 10 55 9 17],[1 55 6 7 8 9],[32 12]};

A = [1007  4044  5002  622  1077;
      552   300   431  124    11;
     2010  1113  1100   88    20];

结果 :(使用scmg回答)

如果A根据第一行排序,我得到:(正确结果)

out =

         1007        1007        4044
           11         552         300
           20        2010        1113

如果我不对矩阵A进行排序,我会得到:(错误的结果)

out =

        4044        5002         622
         300         431         124
        1113        1100          88

应删除列向量A(:,4) = [622;124;88],因为[32 12] = X{4}

应删除列向量[5002;431;1100],因为[2;10;55]中包含X{2} = [2 10 55 9 17]

4 个答案:

答案 0 :(得分:4)

在这种情况下,您不应该尝试消除循环。矢量化实际上伤害了你。

特别是(给你的匿名lambda命名)

issubset = @(x) all(ismember(A4{ii},x))

效率低得离谱,因为它没有短路。用循环替换它。

相同
any(cellfun(issubset, X))

使用与此类似的方法:

idxC = true(size(A4));
NX = numel(X);
for ii = 1:length(A4)
    for jj = 1:NX
        xj = X{jj};
        issubset = true;
        for A4i=A4{ii}
            if ~ismember(A4i, xj)
                issubset = false;
                break;
            end;
        end;
        if issubset
            idxC(ii) = false;
            break;
        end;
    end;
end;

两个break语句,尤其是第二个语句,会触发提前退出,这可能会为您节省大量计算。

答案 1 :(得分:4)

Ben Voigt的答案很棒,但是%row vector for i = 1:3 disp('foo'); end foo foo foo %column vector for i = (1:3).' disp('foo'); end foo 行是造成问题的那一行:for循环不会以列向量的方式工作:

A4i = A4{ii}.'

只需尝试使用A(:,idxC) = 4044 5002 300 431 1113 1100 ,就可以完成工作了!

现在,如果我们看一下输出:

unique

如您所见,最终结果并非我们的预期。

只要subs = 2 2 3 2 3 2 4 4 4 1 1 进行某种排序,sub就不会按照A中相遇的顺序编号,而是按C中相遇的顺序编号(已排序):

unique

因此,你应该通过[C, ~, subs] = unique(M(1:3,:)','rows'); %% rather than [~, ~, subs] = unique(M(1:3,:)','rows'); 给出的矩阵而不是A来获得最终输出

输入

>> out = C(idxC,:).'
out =

        1007        4044
         552         300
        2010        1113

然后,要获得最终输出,请输入

Response.Cache.SetCacheability(HttpCacheability.NoCache);
                Response.Cache.SetExpires(DateTime.UtcNow.AddHours(-1));
                Response.Cache.SetNoStore();
                if (Session["ObjUser"] == null)
                {
                    Response.Redirect("~/UI/Login.aspx", true);
                }
                if (HttpContext.Current.Request.UrlReferrer == null)
                {
                    Response.Redirect("~/UI/Login.aspx", true);
                }

答案 2 :(得分:3)

拍摄#1

本节列出的方法应该是一种快速且直接方法来解决我们的案例。请注意,由于AM中考虑到第三行的唯一列的矩阵,因此我们将其作为输入跳过,因为我们在内部使用解决方案代码生成它。这也在下一个方法/镜头中保持。这是实施 -

function out = shot1_func(M,X)

%// Get unique columns and corresponding subscripts
[unqrows, ~, subs_idx] = unique(M(1:3,:)','rows');
unqcols = unqrows.'; %//'

counts = accumarray(subs_idx(:),1); %// Counts of each unique subs_idx

%// Modify each cell of X based on their relevance with the fourth row of M
X1 = cellfun(@(x) subs_idx(ismember(M(4,:),x)),X,'Uni',0);

lensX = cellfun('length',X1); %// Cell element count of X1

Xn = vertcat(X1{:}); %// Numeric array version of X
N = max(subs_idx);   %// Number of unique subs_idx

%// Finally, get decision mask to select the correst columns from unqcols
sums = cumsum(bsxfun(@eq,Xn,1:N),1);
cumsums_at_shifts = sums(cumsum(lensX),:);

mask1 = any(bsxfun(@eq,diff(cumsums_at_shifts,[],1),counts(:).'),1); %//'
decision_mask = mask1 | cumsums_at_shifts(1,:) == counts(:).';    %//'
out = unqcols(:,~decision_mask);

return

拍摄#2

前面提到的方法可能会遇到瓶颈:

cellfun(@(x) subs_idx(ismember(M4,x)),X,'Uni',0)

因此,为了将表现保持为良好动机,可以将整个过程分为两个阶段。第一阶段可以处理在X的第四行中没有重复的M的单元格,这可以使用矢量化方法实现,另一个阶段解决X's的其余部分使用我们较慢cellfun方法的单元格。

因此,代码会膨胀一点,但希望性能更好。最终的实现看起来像这样 -

%// Get unique columns and corresponding subscripts
[unqrows, ~, subs_idx] = unique(M(1:3,:)','rows')
unqcols = unqrows.' %//'
counts = accumarray(subs_idx,1);

%// Form ID array for X
lX = cellfun('length',X)
X_id = zeros(1,sum(lX))
X_id([1 cumsum(lX(1:end-1)) + 1]) = 1
X_id = cumsum(X_id)

Xr = cellfun(@(x) x(:).',X,'Uni',0); %//'# Convert to cells of row vectors
X1 = [Xr{:}]                         %// Get numeric array version

%// Detect cells that are to be processed by part1 (vectorized code)
[valid,idx1] = ismember(M(4,:),X1)
p1v = ~ismember(1:max(X_id),unique(X_id(accumarray(idx1(valid).',1)>1))) %//'

X_part1 = Xr(p1v)
X_part2 = Xr(~p1v)

%// Get decision masks from first and second passes and thus the final output
N = size(unqcols,2);
dm1 = first_pass(X_part1,M(4,:),subs_idx,counts,N)
dm2 = second_pass(X_part2,M(4,:),subs_idx,counts)
out = unqcols(:,~dm1 & ~dm2)

相关功能 -

function decision_mask = first_pass(X,M4,subs_idx,counts,N)

lensX = cellfun('length',X)'; %//'# Get X cells lengths
X1 = [X{:}];                  %// Extract cell data from X

%// Finally, get the decision mask
vals = changem(X1,subs_idx,M4) .* ismember(X1,M4);

sums = cumsum(bsxfun(@eq,vals(:),1:N),1);
cumsums_at_shifts = sums(cumsum(lensX),:);
mask1 = any(bsxfun(@eq,diff(cumsums_at_shifts,[],1),counts(:).'),1); %//'
decision_mask = mask1 | cumsums_at_shifts(1,:) == counts(:).';    %//'
return


function decision_mask = second_pass(X,M4,subs_idx,counts)

%// Modify each cell of X based on their relevance with the fourth row of M
X1 = cellfun(@(x) subs_idx(ismember(M4,x)),X,'Uni',0);

lensX = cellfun('length',X1); %// Cell element count of X1

Xn = vertcat(X1{:}); %// Numeric array version of X
N = max(subs_idx);   %// Number of unique subs_idx

%// Finally, get decision mask to select the correst columns from unqcols
sums = cumsum(bsxfun(@eq,Xn,1:N),1);
cumsums_at_shifts = sums(cumsum(lensX),:);

mask1 = any(bsxfun(@eq,diff(cumsums_at_shifts,[],1),counts(:).'),1); %//'
decision_mask = mask1 | cumsums_at_shifts(1,:) == counts(:).';       %//'

return

<强> Verficication

本节列出了验证输出的代码。这是验证镜头#1代码的代码 -

%// Setup inputs and output
load('matrice_data.mat');   %// Load input data
X = cellfun(@(x) unique(x).',X,'Uni',0); %// Consider X's unique elements
out = shot1_func(M,X); %// output with Shot#1 function

%// Accumulate fourth row data from M based on the uniqueness from first 3 rows
[unqrows, ~, subs] = unique(M(1:3,:)','rows');    %//'
unqcols = unqrows.';                              %//'
M4 = accumarray(subs(:),M(4,:).',[],@(x) {x});    %//'
M4 = cellfun(@(x) unique(x),M4,'Uni',0);

%// Find out cells in M4 that correspond to unique columns unqcols
[unqcols_idx,~] = find(pdist2(unqcols.',out.')==0);

%// Finally, verify output
for ii = 1:numel(unqcols_idx)
    for jj = 1:numel(X)
        if all(ismember(M4{unqcols_idx(ii)},X{jj}))
            error('Error: Wrong output!')
        end
    end
end
disp('Success!')

答案 3 :(得分:1)

也许你可以使用2次cellfun

idxC = cellfun(@(a) ~any(cellfun(@(x) all(ismember(a,x)), X)), A4, 'un', 0);
idxC = cell2mat(idxC);
out = A(:,idxC)