从数据框构建一个系数图

时间:2015-05-21 06:31:35

标签: r plot ggplot2 coefficients

我想从数据框构建一个系数图,但是我遇到了以下错误。

Error: $ operator is invalid for atomic vectors

有人能够帮忙解决这个问题吗?

由于

示例代码

library(coefplot)
model1 <- lm(price ~ carat + cut, data=diamonds)
df <- coefplot:::buildModelCI(model1)
> df
                  Value Coefficient   HighInner    LowInner  HighOuter   LowOuter  Model
cut^4          74.59427       cut^4    90.83386    58.35469   107.0734    42.1151 model1
cut.C         367.90995       cut.C   388.12410   347.69579   408.3383   327.4816 model1
cut.Q        -528.59779       cut.Q  -505.46541  -551.73018  -482.3330  -574.8626 model1
cut.L        1239.80045       cut.L  1265.90049  1213.70040  1292.0005  1187.6004 model1
carat        7871.08213       carat  7885.06176  7857.10251  7899.0414  7843.1229 model1
(Intercept) -2701.37602 (Intercept) -2685.94495 -2716.80710 -2670.5139 -2732.2382 model1
coefplot(df)
Error: $ operator is invalid for atomic vectors

2 个答案:

答案 0 :(得分:1)

library(arm)
data(diamonds)
model1 <- lm(price ~ carat + cut, data=diamonds)
model2 <- lm(price ~ carat + carat, data=diamonds)

你无法直接从df构建coefplot,因为传递给coefplot函数的参数必须是&#34;拟合对象-lm,glm,bugs和polr,或者向量系数&#34;

但是,您可以从df这样调用您的系数

# df with model1 and model2 coefs
df <- as.data.frame(cbind(model1[[1]], model2[[1]]))
coefplot(model1, coefs = as.vector(df[,1]))

model1 coefs

如果要显示多个模型系数,可以使用

par(new=TRUE) 
# display coefs of model2
coefplot(model1, coefs = as.vector(df[,2]))

答案 1 :(得分:1)

经过多次试验和错误后,我研究了如何编辑coefplot多值函数的源代码。

创建我们的测试数据集。

library(coefplot)

model1 <- lm(price ~ carat + cut, data=diamonds)
model2 <- lm(price ~ carat + cut + color, data=diamonds)
model3 <- lm(price ~ carat + color, data=diamonds)
dflist <- list(buildModelCI(model1), buildModelCI(model2), buildModelCI(model3))
dflist

现在,下面是多时隙函数的调整代码,它将采用包含系数的dflist数据帧,而不是模型列表。

#edited version of buildModelCI.default for parsing the dataframes
modelfunc <- function(model, outerCI=2, innerCI=1, intercept=TRUE, numeric=FALSE, 
                     sort=c("natural", "magnitude", "alphabetical"),
                     decreasing=TRUE, name=NULL, ...)
{
  modelCI <- model
  sort <- match.arg(sort)    
  ## possible orderings of the coefficients
  ordering <- switch(sort,
                     natural=order(1:nrow(modelCI), decreasing=decreasing),   # the way the data came in
                     magnitude=order(modelCI$Value, decreasing=decreasing),     #  size order
                     alphabetical=order(modelCI$Coefficient, decreasing=decreasing),    # alphabetical order
                     order(1:nrow(modelCI))     # default, the way it came in
  )

  # implement the ordering
  modelCI <- modelCI[ordering, ]
  modelCI$Coefficient <- factor(modelCI$Coefficient, levels=modelCI$Coefficient)

  return(modelCI)
}

#new function for multiplot coeffcient plots
mymultiplot <- function (..., title = "Coefficient Plot", xlab = "Value", ylab = "Coefficient", 
                         innerCI = 1, outerCI = 0, lwdInner = 1, lwdOuter = 0, pointSize = 3, 
                         dodgeHeight = 1, color = "blue", shape = 16, linetype = 1, 
                         cex = 0.8, textAngle = 0, numberAngle = 90, zeroColor = "grey", 
                         zeroLWD = 1, zeroType = 2, single = FALSE, scales = "fixed", 
                         ncol = length(unique(modelCI$Model)), sort = c("natural", 
                                                                        "normal", "magnitude", "size", "alphabetical"), decreasing = TRUE, 
                         names = NULL, numeric = FALSE, fillColor = "grey", alpha = 1/2, 
                         horizontal = FALSE, factors = NULL, only = NULL, shorten = TRUE, 
                         intercept = TRUE, interceptName = "(Intercept)", coefficients = NULL, 
                         predictors = NULL, strict = FALSE, newNames = NULL, plot = TRUE, 
                         drop = FALSE, by = c("Coefficient", "Model"), plot.shapes = FALSE, 
                         plot.linetypes = FALSE, legend.position = "right", secret.weapon = FALSE) 
{
  if (tryCatch(is.list(...), error = function(e) FALSE)) {
    theDots <- list(...)[[1]]
    if (is.null(names(theDots))) {
      names(theDots) <- sprintf("Model%s", 1:length(theDots))
    }
  }
  else {
    theDots <- list(...)
  }
  theArgs <- unlist(structure(as.list(match.call()[-1]), class = "uneval"))
  if (is.null(names(theArgs))) {
    theNames <- theArgs
  }
  else {
    theNames <- theArgs[names(theArgs) == ""]
  }
  if (is.null(names(theDots))) {
    names(theDots) <- theNames
  }
  sort <- match.arg(sort)
  by <- match.arg(by)
  legend.position <- match.arg(legend.position)
  if (secret.weapon) {
    by <- "Model"
    horizontal <- TRUE
  }
  if (by == "Model" & length(coefficients) != 1) {
    stop("If plotting the model along the axis then exactly one coefficient must be specified for plotting")
  }
  #new code to parse data frames
  modelCI <- plyr:::ldply(theDots, modelfunc, outerCI = outerCI, 
                          innerCI = innerCI, intercept = intercept, numeric = numeric, 
                          sort = sort, decreasing = decreasing, factors = factors, 
                          shorten = shorten, coefficients = coefficients, predictors = predictors, 
                          strict = strict, newNames = newNames)
  #oldcode to parse models
  #modelCI <- plyr:::ldply(theDots, .fun = buildModelCI, outerCI = outerCI, 
  #                 innerCI = innerCI, intercept = intercept, numeric = numeric, 
  #                 sort = sort, decreasing = decreasing, factors = factors, 
  #                 shorten = shorten, coefficients = coefficients, predictors = predictors, 
  #                 strict = strict, newNames = newNames)
  modelCI$Model <- modelCI$.id
  modelCI$.id <- NULL
  if (!is.null(names)) {
    names(names) <- theNames
    modelCI$Model <- names[modelCI$Model]
  }
  if (drop) {
    notNA <- daply(modelCI, .variables = "Model", function(x) {
      !all(is.na(x$Coef))
    })
    modelCI <- modelCI[modelCI$Model %in% names(which(notNA == 
                                                        TRUE)), ]
  }
  if (!plot) {
    return(modelCI)
  }
  p <- coefplot:::buildPlotting.default(modelCI = modelCI, title = title, 
                                        xlab = xlab, ylab = ylab, lwdInner = lwdInner, lwdOuter = lwdOuter, 
                                        pointSize = pointSize, dodgeHeight = dodgeHeight, color = color, 
                                        shape = shape, linetype = linetype, cex = cex, textAngle = textAngle, 
                                        numberAngle = numberAngle, zeroColor = zeroColor, zeroLWD = zeroLWD, 
                                        outerCI = outerCI, innerCI = innerCI, zeroType = zeroType, 
                                        numeric = numeric, fillColor = fillColor, alpha = alpha, 
                                        multi = TRUE, value = "Value", coefficient = by, horizontal = horizontal, 
                                        facet = FALSE, scales = "fixed")
  theColorScale <- list(Coefficient = scale_colour_discrete("Model"), 
                        Model = scale_color_manual(values = rep(color, length(unique(modelCI$Model))), 
                                                   guide = FALSE))
  theShapeScale <- list(NoShapes = scale_shape_manual(values = rep(shape, 
                                                                   length(unique(modelCI$Model))), guide = FALSE), Shapes = scale_shape_manual(values = 1:length(unique(modelCI$Model))))
  theLinetypeScale <- list(NoShapes = scale_linetype_manual(values = rep(linetype, 
                                                                         length(unique(modelCI$Model))), guide = FALSE), Shapes = scale_linetype_manual(values = 1:length(unique(modelCI$Model))))
  p + theColorScale[[by]] + theShapeScale[[plot.shapes + 1]] + 
    theLinetypeScale[[plot.linetypes + 1]] + theme(legend.position = legend.position) + 
    if (!single) 
      facet_wrap(~Model, scales = scales, ncol = ncol)
}

现在我们使用新函数

绘制图形
mymultiplot(dflist)

enter image description here