从python中的其他csv列附加到新的csv

时间:2015-05-20 18:54:11

标签: python csv numpy pandas

我有8个带有16列的.csv文件和没有Header的“n”行。我想解析每个.csv并获取列[0,8] [#where列0是x,y,z等的值,第8列始终是#的值]并将数据放入新的。 CSV。完成后,new.csv应该有16列(每个input.csv有2列)和“n”行。

现在,我想从new.csv中取出Column [1,3,5,7,9,11,13,15]的平均值并将其附加到另一个文件或此文件中。基本上在新的csv中,我希望从输入文件中获得colum [8]的平均值和输入文件中的每个列[0]。所以期望的最终输出应该具有9列和n行的形状。 示例输入文件:

a.csv:
5.42E+05    6.52E+05    2.17E+04    2.73E+04    2.58E+04    2.33E+04    2.81E+04    3.37E+04    1.08E+08    1.10E+08    2.54E+05    3.21E+05    2.99E+05    2.74E+05    3.39E+05    4.07E+05
4.64E+04    1.15E+06    1.96E+04    2.53E+04    2.39E+04    2.37E+04    1.98E+04    2.85E+04    6.18E+05    2.17E+08    2.30E+05    3.02E+05    2.75E+05    2.77E+05    2.33E+05    3.42E+05
4.36E+04    1.13E+06    5.72E+04    2.71E+04    2.77E+04    2.37E+04    2.62E+04    7.35E+04    5.78E+05    2.17E+08    9.26E+05    3.25E+05    3.20E+05    2.72E+05    3.20E+05    1.46E+06
4.32E+04    1.02E+06    1.47E+05    2.63E+04    3.05E+04    2.26E+04    2.89E+04    2.45E+04    5.70E+05    2.15E+08    2.78E+06    3.02E+05    3.58E+05    2.63E+05    3.49E+05    2.87E+05
4.44E+04    7.83E+05    1.58E+05    2.95E+04    2.71E+05    2.71E+04    3.67E+04    2.85E+04    5.86E+05    1.61E+08    2.89E+06    3.48E+05    5.39E+07    3.14E+05    4.49E+05    3.39E+05
1.47E+05    1.02E+06    2.09E+04    2.72E+04    2.66E+04    6.18E+04    3.50E+04    3.00E+04    2.72E+06    2.15E+08    2.46E+05    3.18E+05    3.07E+05    9.91E+05    7.18E+05    3.71E+05
1.81E+05    7.67E+05    1.94E+04    5.05E+04    2.62E+04    4.50E+04    2.92E+04    2.86E+04    3.16E+06    1.61E+08    2.28E+05    4.84E+06    3.10E+05    5.31E+06    3.49E+05    3.58E+05
4.94E+05    1.34E+05    6.99E+04    8.76E+05    5.51E+04    5.27E+04    3.34E+05    1.30E+05    1.35E+07    3.59E+06    1.66E+06    1.64E+08    1.03E+06    1.12E+06    5.56E+07    3.37E+06
4.79E+04    1.38E+05    2.66E+04    1.02E+06    2.85E+04    2.88E+04    2.89E+04    3.26E+04    6.12E+05    2.72E+06    3.21E+05    2.15E+08    3.29E+05    3.39E+05    3.40E+05    4.04E+05
4.51E+04    6.44E+05    3.02E+04    5.24E+05    2.72E+04    1.89E+04    2.42E+04    3.21E+04    5.97E+05    1.10E+08    3.65E+05    1.07E+08    3.17E+05    2.17E+05    2.85E+05    3.80E+05


b.csv:
    4.25E+03    1.83E+03    1.09E+03    1.35E+03    1.18E+03    1.24E+03    1.16E+03    1.28E+03    1.08E+08    1.10E+08    2.51E+05    3.13E+05    2.80E+05    2.64E+05    3.23E+05    3.32E+05
    4.47E+03    2.20E+03    1.16E+03    1.46E+03    1.28E+03    1.21E+03    1.17E+03    1.36E+03    6.01E+05    2.17E+08    2.92E+05    3.59E+05    3.34E+05    2.84E+05    3.14E+05    3.86E+05
    5.12E+03    1.85E+03    1.62E+03    1.59E+03    1.93E+03    1.36E+03    1.36E+03    1.42E+03    7.19E+05    2.16E+08    1.60E+06    7.14E+06    7.10E+05    8.74E+05    8.67E+05    1.37E+06
    4.32E+03    1.53E+03    2.03E+03    1.11E+03    1.18E+03    1.18E+03    1.52E+03    1.18E+03    5.81E+05    2.15E+08    2.70E+06    2.84E+05    3.24E+05    3.12E+05    4.25E+05    3.65E+05
    4.64E+03    1.53E+03    2.07E+03    1.15E+03    1.15E+03    1.25E+03    1.50E+03    1.13E+03    1.17E+06    1.61E+08    2.74E+06    2.98E+05    2.82E+05    5.38E+07    4.16E+05    3.41E+05
    5.03E+03    1.61E+03    1.17E+03    1.15E+03    1.02E+03    1.12E+03    1.40E+03    1.43E+03    2.56E+06    2.16E+08    2.37E+05    2.57E+05    2.43E+05    2.65E+05    4.03E+05    4.43E+05
    5.11E+03    1.37E+03    1.24E+03    1.20E+03    1.21E+03    1.10E+03    1.28E+03    1.34E+03    3.09E+06    1.61E+08    2.84E+05    2.93E+05    2.91E+05    2.34E+05    5.40E+07    3.07E+05
    5.79E+03    2.51E+03    2.15E+03    2.21E+03    3.57E+03    1.67E+03    2.61E+03    2.28E+03    3.08E+06    4.98E+06    3.60E+06    1.63E+08    7.06E+06    1.95E+06    5.74E+07    3.44E+06
    4.49E+03    1.88E+03    1.22E+03    1.47E+03    1.23E+03    1.04E+03    1.42E+03    1.37E+03    6.11E+05    2.67E+06    2.93E+05    2.15E+08    3.31E+05    2.26E+05    4.13E+05    3.53E+05
    4.50E+03    2.22E+03    1.40E+03    1.34E+03    1.26E+03    1.22E+03    1.18E+03    1.35E+03    6.43E+05    1.10E+08    3.31E+05    1.07E+08    3.50E+05    3.29E+05    3.69E+05    4.26E+05



c.csv:
    1.30E+06    4.34E+05    4.66E+04    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    1.62E+08    5.65E+07    6.02E+06    3.24E+05    3.55E+05    2.83E+05    3.41E+05    4.05E+05
    0.00E+00    1.74E+06    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    5.61E+05    2.17E+08    3.12E+05    3.34E+05    2.83E+05    2.83E+05    3.01E+05    3.45E+05
    0.00E+00    1.74E+06    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    6.08E+05    2.17E+08    8.92E+05    3.47E+05    3.43E+05    2.22E+05    3.64E+05    2.38E+05
    0.00E+00    1.74E+06    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    5.61E+05    2.15E+08    2.90E+06    3.35E+05    3.08E+05    5.85E+05    3.60E+05    3.81E+05
    0.00E+00    1.74E+06    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    5.45E+05    2.15E+08    2.90E+06    3.11E+05    3.06E+05    2.88E+05    3.73E+05    3.10E+05
    0.00E+00    1.30E+06    0.00E+00    0.00E+00    0.00E+00    0.00E+00    0.00E+00    9.22E+04    4.90E+06    1.65E+08    8.92E+05    3.07E+06    1.37E+06    3.40E+06    1.53E+06    1.52E+07
    0.00E+00    1.74E+06    0.00E+00    4.69E+04    0.00E+00    0.00E+00    0.00E+00    0.00E+00    3.09E+06    2.15E+08    3.08E+05    6.15E+06    3.48E+05    3.63E+05    3.85E+05    4.12E+05
    0.00E+00    0.00E+00    0.00E+00    1.31E+06    0.00E+00    0.00E+00    4.36E+05    0.00E+00    3.06E+06    1.35E+06    2.31E+05    1.61E+08    2.89E+05    2.05E+05    5.41E+07    1.77E+06
    0.00E+00    0.00E+00    0.00E+00    1.74E+06    0.00E+00    0.00E+00    0.00E+00    0.00E+00    6.69E+05    2.27E+06    3.02E+05    2.16E+08    3.27E+05    3.08E+05    3.50E+05    3.75E+05
    0.00E+00    8.69E+05    0.00E+00    8.71E+05    0.00E+00    0.00E+00    0.00E+00    0.00E+00    6.68E+05    1.10E+08    3.07E+05    1.08E+08    3.67E+05    2.34E+05    3.71E+05    3.78

Final expected output (after averaging column 8):
5.42E+05    4.25E+03    1.30E+06    125650487
4.64E+04    4.47E+03    0.00E+00    593233.3333
4.36E+04    5.12E+03    0.00E+00    634780
4.32E+04    4.32E+03    0.00E+00    570865
4.44E+04    4.64E+03    0.00E+00    766418
1.47E+05    5.03E+03    0.00E+00    3393342.667
1.81E+05    5.11E+03    0.00E+00    3113608.333
4.94E+05    5.79E+03    0.00E+00    6532673.333
4.79E+04    4.49E+03    0.00E+00    630900.3333
4.51E+04    4.50E+03    0.00E+00    636023

然后我要为所有16列进行循环(将以下集合作为[n,n + 8],其中n = 0到7。

为冗长的描述道歉,但我似乎无法在python中附加列。 提前谢谢。

+++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++ 以下是我开始使用的示例代码:

import csv
import numpy as np
import sys
import pandas as pd
import glob
damn = ("a", "b", "c","e","f","g","h","i")
data = []

for fles in range(len(damn)):
    core0data = np.genfromtxt('./%s_raw_combine.csv'%damn[fles], dtype=float, delimiter=',',usecols=(0,8))
    #core1data = np.genfromtxt('./%s_raw_combine.csv'%damn[fles], dtype=float, delimiter=',',usecols=(1,9))
    #core2data = np.genfromtxt('./%s_raw_combine.csv'%damn[fles], dtype=float, delimiter=',',usecols=(2,10))
    #core3data = np.genfromtxt('./%s_raw_combine.csv'%damn[fles], dtype=float, delimiter=',',usecols=(3,11))
    #core4data = np.genfromtxt('./%s_raw_combine.csv'%damn[fles], dtype=float, delimiter=',',usecols=(4,12))
    #core5data = np.genfromtxt('./%s_raw_combine.csv'%damn[fles], dtype=float, delimiter=',',usecols=(5,13))
    #core6data = np.genfromtxt('./%s_raw_combine.csv'%damn[fles], dtype=float, delimiter=',',usecols=(6,14))
    #core7data = np.genfromtxt('./%s_raw_combine.csv'%damn[fles], dtype=float, delimiter=',',usecols=(7,15))
    data.append(core0data)

np.savetxt("writer.csv", data, delimiter= ",")

但是在运行之后,我收到错误:

 > python2.7 new.py 
Traceback (most recent call last):
  File "new.py", line 20, in <module>
    np.savetxt("writer.csv", data, delimiter= ",")
  File "~/anaconda/lib/python2.7/site-packages/numpy/lib/npyio.py", line 1083, in savetxt
    fh.write(asbytes(format % tuple(row) + newline))
TypeError: float argument required, not numpy.ndarray

2 个答案:

答案 0 :(得分:2)

这将连接行并将它们写入新的csv:

import csv

from glob import iglob
from itertools import chain

data = []

for file in iglob("*.csv"):
    with open(file) as f:
        r = csv.reader(f)
        data.append(list(chain.from_iterable((float(row[0]), float(row[8])) for row in r)))


with open("new.csv","w") as out:
    wr = csv.writer(out)
    wr.writerows(zipped)

将数据传递给pandas:

data = []
for file in iglob("*.csv"):
    with open(file) as f:
        r = csv.reader(f)
        data.append(list(chain.from_iterable((float(row[0]), float(row[8])) for row in r)))

zipped = zip(*data)


import pandas as pd

df = pd.DataFrame(zipped)

print(df[0].mean())
print(df[1].mean())
print(df[2].mean())
print(df)

输出:

69610.0
3093.0
103830.0
            0          1          2
0     1300000       4250     542000
1   162000000  108000000  108000000
2           0       4470      46400
3      561000     601000     618000
4           0       5120      43600
5      608000     719000     578000
6           0       4320      43200
7      561000     581000     570000
8           0       4640      44400
9      545000    1170000     586000
10          0       5030     147000
11    4900000    2560000    2720000
12          0       5110     181000
13    3090000    3090000    3160000
14          0       5790     494000
15    3060000    3080000   13500000
16          0       4490      47900
17     669000     611000     612000
18          0       4500      45100
19     668000     643000     597000

得到每行的平均值:

print(df.mean(1))

输出:

0     615416.666667
1      11660.000000
2      16956.666667
3       9953.333333
4      16240.000000
5      24973.333333
6      15840.000000
7       8560.000000
8      16346.666667
9       9876.666667
10     50676.666667
11     41210.000000
12     62036.666667
13      9980.000000
14    166596.666667
15     44093.333333
16     17463.333333
17     11323.333333
18     16533.333333
19     11150.000000
dtype: float64

添加该列:

df[3] = df.mean(1)

print(df)

输出:

         0     1       2              3
0   1300000  4250  542000  615416.666667
1         0  1280   33700   11660.000000
2         0  4470   46400   16956.666667
3         0  1360   28500    9953.333333
4         0  5120   43600   16240.000000
5         0  1420   73500   24973.333333
6         0  4320   43200   15840.000000
7         0  1180   24500    8560.000000
8         0  4640   44400   16346.666667
9         0  1130   28500    9876.666667
10        0  5030  147000   50676.666667
11    92200  1430   30000   41210.000000
12        0  5110  181000   62036.666667
13        0  1340   28600    9980.000000
14        0  5790  494000  166596.666667
15        0  2280  130000   44093.333333
16        0  4490   47900   17463.333333
17        0  1370   32600   11323.333333
18        0  4500   45100   16533.333333
19        0  1350   32100   11150.000000

保存到csv:

df.to_("new.csv",sep=" ")

输出:

 0 1 2 3
0 1300000.0 4250.0 542000.0 615416.6666666666
1 0.0 1280.0 33700.0 11660.0
2 0.0 4470.0 46400.0 16956.666666666668
3 0.0 1360.0 28500.0 9953.333333333334
4 0.0 5120.0 43600.0 16240.0
5 0.0 1420.0 73500.0 24973.333333333332
6 0.0 4320.0 43200.0 15840.0
7 0.0 1180.0 24500.0 8560.0
8 0.0 4640.0 44400.0 16346.666666666666
9 0.0 1130.0 28500.0 9876.666666666666
10 0.0 5030.0 147000.0 50676.666666666664
11 92200.0 1430.0 30000.0 41210.0
12 0.0 5110.0 181000.0 62036.666666666664
13 0.0 1340.0 28600.0 9980.0
14 0.0 5790.0 494000.0 166596.66666666666
15 0.0 2280.0 130000.0 44093.333333333336
16 0.0 4490.0 47900.0 17463.333333333332
17 0.0 1370.0 32600.0 11323.333333333334
18 0.0 4500.0 45100.0 16533.333333333332
19 0.0 1350.0 32100.0 11150.0

如果您不想要名称和行索引:

 df.to_csv("new.csv",sep=" ",index=False,header=False)

输出:

1300000.0 4250.0 542000.0 615416.6666666666
0.0 1280.0 33700.0 11660.0
0.0 4470.0 46400.0 16956.666666666668
0.0 1360.0 28500.0 9953.333333333334
0.0 5120.0 43600.0 16240.0
0.0 1420.0 73500.0 24973.333333333332
0.0 4320.0 43200.0 15840.0
0.0 1180.0 24500.0 8560.0
0.0 4640.0 44400.0 16346.666666666666
0.0 1130.0 28500.0 9876.666666666666
0.0 5030.0 147000.0 50676.666666666664
92200.0 1430.0 30000.0 41210.0
0.0 5110.0 181000.0 62036.666666666664
0.0 1340.0 28600.0 9980.0
0.0 5790.0 494000.0 166596.66666666666
0.0 2280.0 130000.0 44093.333333333336
0.0 4490.0 47900.0 17463.333333333332
0.0 1370.0 32600.0 11323.333333333334
0.0 4500.0 45100.0 16533.333333333332
0.0 1350.0 32100.0 11150.0

答案 1 :(得分:0)

尝试大熊猫。 在许多好处中,将是明确的列标记和列切片。

没有完全复制,但也许我们可以努力雕刻完整的熊猫解决方案。

import pandas as pd

filenames = ['a.csv','b.csv','c.csv']
for i,filename in enumerate(filenames):
    df = pd.read_csv(filename,header=None)
    df.columns = df.columns + 1 #
    filenames[i] = df

dfs = pd.concat(filenames,axis=1)

print dfs.loc[:,[1,8]].head()

cols = [1,3]
print dfs[cols].mean()