Ruby 2.2中的垃圾收集器引发意外的CoW

时间:2015-05-20 14:53:29

标签: ruby garbage-collection fork shared-memory copy-on-write

当我分叉进程时,如何防止GC激发写时复制?我最近一直在分析垃圾收集器在Ruby中的行为,因为我在程序中遇到了一些内存问题(即使对于相当小的任务,我的60核0.5Tb机器上的内存耗尽)。对我来说,这确实限制了ruby在多核服务器上运行程序的实用性。我想在这里展示我的实验和结果。

当分叉期间垃圾收集器运行时会出现问题。我调查了三个说明问题的案例。

案例1:我们使用数组在内存中分配了大量对象(字符串不超过20个字节)。使用随机数和字符串格式创建字符串。当进程分叉并强制GC在子进程中运行时,所有共享内存都是私有的,导致初始内存重复。

情况2:我们使用数组在内存中分配了很多对象(字符串),但是使用rand.to_s函数创建了字符串,因此我们删除了与前一种情况相比的数据格式。我们最终使用的内存较少,可能是因为垃圾较少。当进程分叉并强制GC在子进程中运行时,只有部分内存变为私有。我们有重复的初始内存,但程度较小。

案例3:与之前相比,我们分配的对象更少,但对象更大,因此分配的内存量与之前的情况相同。当进程分叉并且我们强制GC在子进程中运行时,所有内存保持共享,即没有内存重复。

在这里,我粘贴用于这些实验的Ruby代码。要在不同情况之间切换,只需更改memory_object函数中的“option”值即可。代码在Ubuntu 14.04机器上使用Ruby 2.2.2,2.2.1,2.1.3,2.1.5和1.9.3进行了测试。

案例1的示例输出:

ruby version 2.2.2 
 proces   pid log                   priv_dirty   shared_dirty 
 Parent  3897 post alloc                   38            0 
 Parent  3897 4 fork                        0           37 
 Child   3937 4 initial                     0           37 
 Child   3937 8 empty GC                   35            5 

完全相同的代码是用Python编写的,在所有情况下,CoW都可以正常工作。

案例1的示例输出:

python version 2.7.6 (default, Mar 22 2014, 22:59:56) 
[GCC 4.8.2] 
 proces   pid log                   priv_dirty shared_dirty 
 Parent  4308 post alloc                35             0 
 Parent  4308 4 fork                     0            35 
 Child   4309 4 initial                  0            35 
 Child   4309 10 empty GC                1            34 

Ruby代码

$start_time=Time.new

# Monitor use of Resident and Virtual memory.
class Memory

    shared_dirty = '.+?Shared_Dirty:\s+(\d+)'
    priv_dirty = '.+?Private_Dirty:\s+(\d+)'
    MEM_REGEXP = /#{shared_dirty}#{priv_dirty}/m

    # get memory usage
    def self.get_memory_map( pids)
        memory_map = {}
        memory_map[ :pids_found] = {}
        memory_map[ :shared_dirty] = 0
        memory_map[ :priv_dirty] = 0

        pids.each do |pid|
            begin
                lines = nil
                lines = File.read( "/proc/#{pid}/smaps")
            rescue
                lines = nil
            end
            if lines
                lines.scan(MEM_REGEXP) do |shared_dirty, priv_dirty|
                    memory_map[ :pids_found][pid] = true
                    memory_map[ :shared_dirty] += shared_dirty.to_i
                    memory_map[ :priv_dirty] += priv_dirty.to_i
                end
            end
        end
        memory_map[ :pids_found] = memory_map[ :pids_found].keys
        return memory_map
    end

    # get the processes and get the value of the memory usage
    def self.memory_usage( )
        pids   = [ $$]
        result = self.get_memory_map( pids)

        result[ :pids]   = pids
        return result
    end

    # print the values of the private and shared memories
    def self.log( process_name='', log_tag="")
        if process_name == "header"
            puts " %-6s %5s %-12s %10s %10s\n" % ["proces", "pid", "log", "priv_dirty", "shared_dirty"]
        else
            time = Time.new - $start_time
            mem = Memory.memory_usage( )
            puts " %-6s %5d %-12s %10d %10d\n" % [process_name, $$, log_tag, mem[:priv_dirty]/1000, mem[:shared_dirty]/1000]
        end
    end
end

# function to delay the processes a bit
def time_step( n)
    while Time.new - $start_time < n
        sleep( 0.01)
    end
end

# create an object of specified size. The option argument can be changed from 0 to 2 to visualize the behavior of the GC in various cases
#
# case 0 (default) : we make a huge array of small objects by formatting a string
# case 1 : we make a huge array of small objects without formatting a string (we use the to_s function)
# case 2 : we make a smaller array of big objects
def memory_object( size, option=1)
    result = []
    count = size/20

    if option > 3 or option < 1
        count.times do
            result << "%20.18f" % rand
        end
    elsif option == 1
        count.times do
            result << rand.to_s
        end
    elsif option == 2
        count = count/10
        count.times do
            result << ("%20.18f" % rand)*30
        end
    end

    return result
end

##### main #####

puts "ruby version #{RUBY_VERSION}"

GC.disable

# print the column headers and first line
Memory.log( "header")

# Allocation of memory
big_memory = memory_object( 1000 * 1000 * 10)

Memory.log( "Parent", "post alloc")

lab_time = Time.new - $start_time
if lab_time < 3.9
    lab_time = 0
end

# start the forking
pid = fork do
    time = 4
    time_step( time + lab_time)
    Memory.log( "Child", "#{time} initial")

    # force GC when nothing happened
    GC.enable; GC.start; GC.disable

    time = 8
    time_step( time + lab_time)
    Memory.log( "Child", "#{time} empty GC")

    sleep( 1)
    STDOUT.flush
    exit!
end

time = 4
time_step( time + lab_time)
Memory.log( "Parent", "#{time} fork")

# wait for the child to finish
Process.wait( pid)

Python代码

import re
import time
import os
import random
import sys
import gc

start_time=time.time()

# Monitor use of Resident and Virtual memory.
class Memory:   

    def __init__(self):
        self.shared_dirty = '.+?Shared_Dirty:\s+(\d+)'
        self.priv_dirty = '.+?Private_Dirty:\s+(\d+)'
        self.MEM_REGEXP = re.compile("{shared_dirty}{priv_dirty}".format(shared_dirty=self.shared_dirty, priv_dirty=self.priv_dirty), re.DOTALL)

    # get memory usage
    def get_memory_map(self, pids):
        memory_map = {}
        memory_map[ "pids_found" ] = {}
        memory_map[ "shared_dirty" ] = 0
        memory_map[ "priv_dirty" ] = 0

        for pid in pids:
            try:
                lines = None

                with open( "/proc/{pid}/smaps".format(pid=pid), "r" ) as infile:
                    lines = infile.read()
            except:
                lines = None

            if lines:
                for shared_dirty, priv_dirty in re.findall( self.MEM_REGEXP, lines ):
                    memory_map[ "pids_found" ][pid] = True
                    memory_map[ "shared_dirty" ] += int( shared_dirty )
                    memory_map[ "priv_dirty" ] += int( priv_dirty )     

        memory_map[ "pids_found" ] = memory_map[ "pids_found" ].keys()
        return memory_map

    # get the processes and get the value of the memory usage   
    def memory_usage( self):
        pids   = [ os.getpid() ]
        result = self.get_memory_map( pids)

        result[ "pids" ]   = pids

        return result

    # print the values of the private and shared memories
    def log( self, process_name='', log_tag=""):
        if process_name == "header":
            print " %-6s %5s %-12s %10s %10s" % ("proces", "pid", "log", "priv_dirty", "shared_dirty")
        else:
            global start_time
            Time = time.time() - start_time
            mem = self.memory_usage( )
            print " %-6s %5d %-12s %10d %10d" % (process_name, os.getpid(), log_tag, mem["priv_dirty"]/1000, mem["shared_dirty"]/1000)

# function to delay the processes a bit
def time_step( n):
    global start_time
    while (time.time() - start_time) < n:
        time.sleep( 0.01)

# create an object of specified size. The option argument can be changed from 0 to 2 to visualize the behavior of the GC in various cases
#
# case 0 (default) : we make a huge array of small objects by formatting a string
# case 1 : we make a huge array of small objects without formatting a string (we use the to_s function)
# case 2 : we make a smaller array of big objects                                       
def memory_object( size, option=2):
    count = size/20

    if option > 3 or option < 1:
        result = [ "%20.18f"% random.random() for i in xrange(count) ]

    elif option == 1:
        result = [ str( random.random() ) for i in xrange(count) ]

    elif option == 2:
        count = count/10
        result = [ ("%20.18f"% random.random())*30 for i in xrange(count) ]

    return result

##### main #####

print "python version {version}".format(version=sys.version)

memory = Memory()

gc.disable()

# print the column headers and first line
memory.log( "header")   # Print the headers of the columns

# Allocation of memory
big_memory = memory_object( 1000 * 1000 * 10)   # Allocate memory

memory.log( "Parent", "post alloc")

lab_time = time.time() - start_time
if lab_time < 3.9:
    lab_time = 0

# start the forking
pid = os.fork()     # fork the process
if pid == 0:
    Time = 4
    time_step( Time + lab_time)
    memory.log( "Child", "{time} initial".format(time=Time))

    # force GC when nothing happened
    gc.enable(); gc.collect(); gc.disable();

    Time = 10
    time_step( Time + lab_time)
    memory.log( "Child", "{time} empty GC".format(time=Time))

    time.sleep( 1)

    sys.exit(0)

Time = 4
time_step( Time + lab_time)
memory.log( "Parent", "{time} fork".format(time=Time))

# Wait for child process to finish
os.waitpid( pid, 0)

修改

事实上,在分叉过程之前多次调用GC解决了这个问题,我感到非常惊讶。我也使用Ruby 2.0.0运行代码,问题甚至没有出现,因此它必须与您提到的这一代GC相关。 但是,如果我调用memory_object函数而不将输出分配给任何变量(我只是创建垃圾),那么内存是重复的。复制的内存量取决于我创建的垃圾量 - 垃圾越多,内存变得越私有。

我有什么想法可以阻止这种情况吗?

以下是一些结果

在2.0.0中运行GC

ruby version 2.0.0
 proces   pid log          priv_dirty shared_dirty
 Parent  3664 post alloc           67          0
 Parent  3664 4 fork                1         69
 Child   3700 4 initial             1         69
 Child   3700 8 empty GC            6         65

在孩子中调用memory_object(1000 * 1000)

ruby version 2.0.0
 proces   pid log          priv_dirty shared_dirty
 Parent  3703 post alloc           67          0
 Parent  3703 4 fork                1         70
 Child   3739 4 initial             1         70
 Child   3739 8 empty GC           15         56

调用memory_object(1000 * 1000 * 10)

ruby version 2.0.0
 proces   pid log          priv_dirty shared_dirty
 Parent  3743 post alloc           67          0
 Parent  3743 4 fork                1         69
 Child   3779 4 initial             1         69
 Child   3779 8 empty GC           89          5

1 个答案:

答案 0 :(得分:2)

UPD2

突然想出为什么所有内存都是私有的,如果你格式化字符串 - 你在格式化过程中产生垃圾,禁用GC,然后启用GC,你在生成的数据中有被释放对象的漏洞。然后你分叉,新垃圾开始占据这些漏洞,垃圾越多 - 私有页面越多。

所以我添加了一个清理函数来运行GC每2000个周期(只是启用惰性GC没有帮助):

count.times do |i|
  cleanup(i)
  result << "%20.18f" % rand
end

#......snip........#

def cleanup(i)
      if ((i%2000).zero?)
        GC.enable; GC.start; GC.disable
      end
end   

##### main #####

导致(在fork之后生成memory_object( 1000 * 1000 * 10)):

RUBY_GC_HEAP_INIT_SLOTS=600000 ruby gc-test.rb 0
ruby version 2.2.0
 proces   pid log          priv_dirty shared_dirty
 Parent  2501 post alloc           35          0
 Parent  2501 4 fork                0         35
 Child   2503 4 initial             0         35
 Child   2503 8 empty GC           28         22

是的,它影响性能,但仅在分叉之前,即在您的情况下增加加载时间。

UPD1

刚刚找到criteria ruby​​ 2.2设置旧对象位,它是3 GC,所以如果你在分叉前添加以下内容:

GC.enable; 3.times {GC.start}; GC.disable
# start the forking

您将获得(命令行中的选项1):

$ RUBY_GC_HEAP_INIT_SLOTS=600000 ruby gc-test.rb 1
ruby version 2.2.0
 proces   pid log          priv_dirty shared_dirty
 Parent  2368 post alloc           31          0
 Parent  2368 4 fork                1         34
 Child   2370 4 initial             1         34
 Child   2370 8 empty GC            2         32

但是这需要进一步测试这些对象在未来GC上的行为,至少在100 GC的:old_objects保持不变之后,所以我认为它应该没问题

GC.stat的日志为here

顺便说一下,还有选项RGENGC_OLD_NEWOBJ_CHECK从一开始就创建旧对象,但我怀疑这是一个好主意,但对特定情况可能有用。

第一个答案

我在上面的评论中提出的建议是错误的,实际上位图表是救世主。

(option = 1)

ruby version 2.0.0
 proces   pid log          priv_dirty shared_dirty
 Parent 14807 post alloc           27          0
 Parent 14807 4 fork                0         27
 Child  14809 4 initial             0         27
 Child  14809 8 empty GC            6         25 # << almost everything stays shared <<

手动测试并测试了Ruby Enterprise Edition,它只比最坏的情况好一半。

ruby version 1.8.7
 proces   pid log          priv_dirty shared_dirty
 Parent 15064 post alloc           86          0
 Parent 15064 4 fork                2         84
 Child  15065 4 initial             2         84
 Child  15065 8 empty GC           40         46

(我将脚本严格运行1 GC,将RUBY_GC_HEAP_INIT_SLOTS增加到600k)