当我分叉进程时,如何防止GC激发写时复制?我最近一直在分析垃圾收集器在Ruby中的行为,因为我在程序中遇到了一些内存问题(即使对于相当小的任务,我的60核0.5Tb机器上的内存耗尽)。对我来说,这确实限制了ruby在多核服务器上运行程序的实用性。我想在这里展示我的实验和结果。
当分叉期间垃圾收集器运行时会出现问题。我调查了三个说明问题的案例。
案例1:我们使用数组在内存中分配了大量对象(字符串不超过20个字节)。使用随机数和字符串格式创建字符串。当进程分叉并强制GC在子进程中运行时,所有共享内存都是私有的,导致初始内存重复。
情况2:我们使用数组在内存中分配了很多对象(字符串),但是使用rand.to_s函数创建了字符串,因此我们删除了与前一种情况相比的数据格式。我们最终使用的内存较少,可能是因为垃圾较少。当进程分叉并强制GC在子进程中运行时,只有部分内存变为私有。我们有重复的初始内存,但程度较小。
案例3:与之前相比,我们分配的对象更少,但对象更大,因此分配的内存量与之前的情况相同。当进程分叉并且我们强制GC在子进程中运行时,所有内存保持共享,即没有内存重复。
在这里,我粘贴用于这些实验的Ruby代码。要在不同情况之间切换,只需更改memory_object函数中的“option”值即可。代码在Ubuntu 14.04机器上使用Ruby 2.2.2,2.2.1,2.1.3,2.1.5和1.9.3进行了测试。
案例1的示例输出:
ruby version 2.2.2
proces pid log priv_dirty shared_dirty
Parent 3897 post alloc 38 0
Parent 3897 4 fork 0 37
Child 3937 4 initial 0 37
Child 3937 8 empty GC 35 5
完全相同的代码是用Python编写的,在所有情况下,CoW都可以正常工作。
案例1的示例输出:
python version 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2]
proces pid log priv_dirty shared_dirty
Parent 4308 post alloc 35 0
Parent 4308 4 fork 0 35
Child 4309 4 initial 0 35
Child 4309 10 empty GC 1 34
Ruby代码
$start_time=Time.new
# Monitor use of Resident and Virtual memory.
class Memory
shared_dirty = '.+?Shared_Dirty:\s+(\d+)'
priv_dirty = '.+?Private_Dirty:\s+(\d+)'
MEM_REGEXP = /#{shared_dirty}#{priv_dirty}/m
# get memory usage
def self.get_memory_map( pids)
memory_map = {}
memory_map[ :pids_found] = {}
memory_map[ :shared_dirty] = 0
memory_map[ :priv_dirty] = 0
pids.each do |pid|
begin
lines = nil
lines = File.read( "/proc/#{pid}/smaps")
rescue
lines = nil
end
if lines
lines.scan(MEM_REGEXP) do |shared_dirty, priv_dirty|
memory_map[ :pids_found][pid] = true
memory_map[ :shared_dirty] += shared_dirty.to_i
memory_map[ :priv_dirty] += priv_dirty.to_i
end
end
end
memory_map[ :pids_found] = memory_map[ :pids_found].keys
return memory_map
end
# get the processes and get the value of the memory usage
def self.memory_usage( )
pids = [ $$]
result = self.get_memory_map( pids)
result[ :pids] = pids
return result
end
# print the values of the private and shared memories
def self.log( process_name='', log_tag="")
if process_name == "header"
puts " %-6s %5s %-12s %10s %10s\n" % ["proces", "pid", "log", "priv_dirty", "shared_dirty"]
else
time = Time.new - $start_time
mem = Memory.memory_usage( )
puts " %-6s %5d %-12s %10d %10d\n" % [process_name, $$, log_tag, mem[:priv_dirty]/1000, mem[:shared_dirty]/1000]
end
end
end
# function to delay the processes a bit
def time_step( n)
while Time.new - $start_time < n
sleep( 0.01)
end
end
# create an object of specified size. The option argument can be changed from 0 to 2 to visualize the behavior of the GC in various cases
#
# case 0 (default) : we make a huge array of small objects by formatting a string
# case 1 : we make a huge array of small objects without formatting a string (we use the to_s function)
# case 2 : we make a smaller array of big objects
def memory_object( size, option=1)
result = []
count = size/20
if option > 3 or option < 1
count.times do
result << "%20.18f" % rand
end
elsif option == 1
count.times do
result << rand.to_s
end
elsif option == 2
count = count/10
count.times do
result << ("%20.18f" % rand)*30
end
end
return result
end
##### main #####
puts "ruby version #{RUBY_VERSION}"
GC.disable
# print the column headers and first line
Memory.log( "header")
# Allocation of memory
big_memory = memory_object( 1000 * 1000 * 10)
Memory.log( "Parent", "post alloc")
lab_time = Time.new - $start_time
if lab_time < 3.9
lab_time = 0
end
# start the forking
pid = fork do
time = 4
time_step( time + lab_time)
Memory.log( "Child", "#{time} initial")
# force GC when nothing happened
GC.enable; GC.start; GC.disable
time = 8
time_step( time + lab_time)
Memory.log( "Child", "#{time} empty GC")
sleep( 1)
STDOUT.flush
exit!
end
time = 4
time_step( time + lab_time)
Memory.log( "Parent", "#{time} fork")
# wait for the child to finish
Process.wait( pid)
Python代码
import re
import time
import os
import random
import sys
import gc
start_time=time.time()
# Monitor use of Resident and Virtual memory.
class Memory:
def __init__(self):
self.shared_dirty = '.+?Shared_Dirty:\s+(\d+)'
self.priv_dirty = '.+?Private_Dirty:\s+(\d+)'
self.MEM_REGEXP = re.compile("{shared_dirty}{priv_dirty}".format(shared_dirty=self.shared_dirty, priv_dirty=self.priv_dirty), re.DOTALL)
# get memory usage
def get_memory_map(self, pids):
memory_map = {}
memory_map[ "pids_found" ] = {}
memory_map[ "shared_dirty" ] = 0
memory_map[ "priv_dirty" ] = 0
for pid in pids:
try:
lines = None
with open( "/proc/{pid}/smaps".format(pid=pid), "r" ) as infile:
lines = infile.read()
except:
lines = None
if lines:
for shared_dirty, priv_dirty in re.findall( self.MEM_REGEXP, lines ):
memory_map[ "pids_found" ][pid] = True
memory_map[ "shared_dirty" ] += int( shared_dirty )
memory_map[ "priv_dirty" ] += int( priv_dirty )
memory_map[ "pids_found" ] = memory_map[ "pids_found" ].keys()
return memory_map
# get the processes and get the value of the memory usage
def memory_usage( self):
pids = [ os.getpid() ]
result = self.get_memory_map( pids)
result[ "pids" ] = pids
return result
# print the values of the private and shared memories
def log( self, process_name='', log_tag=""):
if process_name == "header":
print " %-6s %5s %-12s %10s %10s" % ("proces", "pid", "log", "priv_dirty", "shared_dirty")
else:
global start_time
Time = time.time() - start_time
mem = self.memory_usage( )
print " %-6s %5d %-12s %10d %10d" % (process_name, os.getpid(), log_tag, mem["priv_dirty"]/1000, mem["shared_dirty"]/1000)
# function to delay the processes a bit
def time_step( n):
global start_time
while (time.time() - start_time) < n:
time.sleep( 0.01)
# create an object of specified size. The option argument can be changed from 0 to 2 to visualize the behavior of the GC in various cases
#
# case 0 (default) : we make a huge array of small objects by formatting a string
# case 1 : we make a huge array of small objects without formatting a string (we use the to_s function)
# case 2 : we make a smaller array of big objects
def memory_object( size, option=2):
count = size/20
if option > 3 or option < 1:
result = [ "%20.18f"% random.random() for i in xrange(count) ]
elif option == 1:
result = [ str( random.random() ) for i in xrange(count) ]
elif option == 2:
count = count/10
result = [ ("%20.18f"% random.random())*30 for i in xrange(count) ]
return result
##### main #####
print "python version {version}".format(version=sys.version)
memory = Memory()
gc.disable()
# print the column headers and first line
memory.log( "header") # Print the headers of the columns
# Allocation of memory
big_memory = memory_object( 1000 * 1000 * 10) # Allocate memory
memory.log( "Parent", "post alloc")
lab_time = time.time() - start_time
if lab_time < 3.9:
lab_time = 0
# start the forking
pid = os.fork() # fork the process
if pid == 0:
Time = 4
time_step( Time + lab_time)
memory.log( "Child", "{time} initial".format(time=Time))
# force GC when nothing happened
gc.enable(); gc.collect(); gc.disable();
Time = 10
time_step( Time + lab_time)
memory.log( "Child", "{time} empty GC".format(time=Time))
time.sleep( 1)
sys.exit(0)
Time = 4
time_step( Time + lab_time)
memory.log( "Parent", "{time} fork".format(time=Time))
# Wait for child process to finish
os.waitpid( pid, 0)
事实上,在分叉过程之前多次调用GC解决了这个问题,我感到非常惊讶。我也使用Ruby 2.0.0运行代码,问题甚至没有出现,因此它必须与您提到的这一代GC相关。 但是,如果我调用memory_object函数而不将输出分配给任何变量(我只是创建垃圾),那么内存是重复的。复制的内存量取决于我创建的垃圾量 - 垃圾越多,内存变得越私有。
我有什么想法可以阻止这种情况吗?
以下是一些结果
在2.0.0中运行GC
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 3664 post alloc 67 0
Parent 3664 4 fork 1 69
Child 3700 4 initial 1 69
Child 3700 8 empty GC 6 65
在孩子中调用memory_object(1000 * 1000)
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 3703 post alloc 67 0
Parent 3703 4 fork 1 70
Child 3739 4 initial 1 70
Child 3739 8 empty GC 15 56
调用memory_object(1000 * 1000 * 10)
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 3743 post alloc 67 0
Parent 3743 4 fork 1 69
Child 3779 4 initial 1 69
Child 3779 8 empty GC 89 5
答案 0 :(得分:2)
突然想出为什么所有内存都是私有的,如果你格式化字符串 - 你在格式化过程中产生垃圾,禁用GC,然后启用GC,你在生成的数据中有被释放对象的漏洞。然后你分叉,新垃圾开始占据这些漏洞,垃圾越多 - 私有页面越多。
所以我添加了一个清理函数来运行GC每2000个周期(只是启用惰性GC没有帮助):
count.times do |i|
cleanup(i)
result << "%20.18f" % rand
end
#......snip........#
def cleanup(i)
if ((i%2000).zero?)
GC.enable; GC.start; GC.disable
end
end
##### main #####
导致(在fork之后生成memory_object( 1000 * 1000 * 10)
):
RUBY_GC_HEAP_INIT_SLOTS=600000 ruby gc-test.rb 0
ruby version 2.2.0
proces pid log priv_dirty shared_dirty
Parent 2501 post alloc 35 0
Parent 2501 4 fork 0 35
Child 2503 4 initial 0 35
Child 2503 8 empty GC 28 22
是的,它影响性能,但仅在分叉之前,即在您的情况下增加加载时间。
刚刚找到criteria ruby 2.2设置旧对象位,它是3 GC,所以如果你在分叉前添加以下内容:
GC.enable; 3.times {GC.start}; GC.disable
# start the forking
您将获得(命令行中的选项1
):
$ RUBY_GC_HEAP_INIT_SLOTS=600000 ruby gc-test.rb 1
ruby version 2.2.0
proces pid log priv_dirty shared_dirty
Parent 2368 post alloc 31 0
Parent 2368 4 fork 1 34
Child 2370 4 initial 1 34
Child 2370 8 empty GC 2 32
但是这需要进一步测试这些对象在未来GC上的行为,至少在100 GC的:old_objects
保持不变之后,所以我认为它应该没问题
GC.stat
的日志为here
顺便说一下,还有选项RGENGC_OLD_NEWOBJ_CHECK
从一开始就创建旧对象,但我怀疑这是一个好主意,但对特定情况可能有用。
我在上面的评论中提出的建议是错误的,实际上位图表是救世主。
(option = 1)
ruby version 2.0.0
proces pid log priv_dirty shared_dirty
Parent 14807 post alloc 27 0
Parent 14807 4 fork 0 27
Child 14809 4 initial 0 27
Child 14809 8 empty GC 6 25 # << almost everything stays shared <<
手动测试并测试了Ruby Enterprise Edition,它只比最坏的情况好一半。
ruby version 1.8.7
proces pid log priv_dirty shared_dirty
Parent 15064 post alloc 86 0
Parent 15064 4 fork 2 84
Child 15065 4 initial 2 84
Child 15065 8 empty GC 40 46
(我将脚本严格运行1 GC,将RUBY_GC_HEAP_INIT_SLOTS
增加到600k)