如何从 kafka 中的消息中识别主题名称。
( sleep 5 && while [ 1 ]; do sleep 1; echo y; done ) | android update sdk --no-ui
我可以从kafka制作人处获取消息。但由于消费者现在正在消费三个主题,因此需要确定主题名称。
答案 0 :(得分:1)
从Spark 1.5.0开始,official documentation鼓励从最近的版本开始使用无接收器/直接方法,最近的版本已经从最近的1.5.0开始实验。 这个新的Direct API允许您轻松获取消息及其元数据,而不是其他好东西。
答案 1 :(得分:0)
不幸的是,这并不简单,因为Spark的源代码中的KafkaReceiver和ReliableKafkaReceiver只存储MessageAndMetadata.key和消息。
Spark的JIRA中有两个与此问题相关的开放票:
已经开了一段时间。
对Spark的源代码进行脏复制/粘贴/修改以解决您的问题:
package org.apache.spark.streaming.kafka
import java.lang.{Integer => JInt}
import java.util.{Map => JMap, Properties}
import kafka.consumer.{KafkaStream, Consumer, ConsumerConfig, ConsumerConnector}
import kafka.serializer.{Decoder, StringDecoder}
import kafka.utils.VerifiableProperties
import org.apache.spark.Logging
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.api.java.{JavaReceiverInputDStream, JavaStreamingContext}
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.receiver.Receiver
import org.apache.spark.streaming.util.WriteAheadLogUtils
import org.apache.spark.util.ThreadUtils
import scala.collection.JavaConverters._
import scala.collection.Map
import scala.reflect._
object MoreKafkaUtils {
def createStream(
jssc: JavaStreamingContext,
zkQuorum: String,
groupId: String,
topics: JMap[String, JInt],
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
): JavaReceiverInputDStream[(String, String, String)] = {
val kafkaParams = Map[String, String](
"zookeeper.connect" -> zkQuorum, "group.id" -> groupId,
"zookeeper.connection.timeout.ms" -> "10000")
val walEnabled = WriteAheadLogUtils.enableReceiverLog(jssc.ssc.conf)
new KafkaInputDStreamWithTopic[String, String, StringDecoder, StringDecoder](jssc.ssc, kafkaParams, topics.asScala.mapValues(_.intValue()), walEnabled, storageLevel)
}
}
private[streaming]
class KafkaInputDStreamWithTopic[
K: ClassTag,
V: ClassTag,
U <: Decoder[_] : ClassTag,
T <: Decoder[_] : ClassTag](
@transient ssc_ : StreamingContext,
kafkaParams: Map[String, String],
topics: Map[String, Int],
useReliableReceiver: Boolean,
storageLevel: StorageLevel
) extends ReceiverInputDStream[(K, V, String)](ssc_) with Logging {
def getReceiver(): Receiver[(K, V, String)] = {
if (!useReliableReceiver) {
new KafkaReceiverWithTopic[K, V, U, T](kafkaParams, topics, storageLevel)
} else {
new ReliableKafkaReceiverWithTopic[K, V, U, T](kafkaParams, topics, storageLevel)
}
}
}
private[streaming]
class KafkaReceiverWithTopic[
K: ClassTag,
V: ClassTag,
U <: Decoder[_] : ClassTag,
T <: Decoder[_] : ClassTag](
kafkaParams: Map[String, String],
topics: Map[String, Int],
storageLevel: StorageLevel
) extends Receiver[(K, V, String)](storageLevel) with Logging {
// Connection to Kafka
var consumerConnector: ConsumerConnector = null
def onStop() {
if (consumerConnector != null) {
consumerConnector.shutdown()
consumerConnector = null
}
}
def onStart() {
logInfo("Starting Kafka Consumer Stream with group: " + kafkaParams("group.id"))
// Kafka connection properties
val props = new Properties()
kafkaParams.foreach(param => props.put(param._1, param._2))
val zkConnect = kafkaParams("zookeeper.connect")
// Create the connection to the cluster
logInfo("Connecting to Zookeeper: " + zkConnect)
val consumerConfig = new ConsumerConfig(props)
consumerConnector = Consumer.create(consumerConfig)
logInfo("Connected to " + zkConnect)
val keyDecoder = classTag[U].runtimeClass.getConstructor(classOf[VerifiableProperties])
.newInstance(consumerConfig.props)
.asInstanceOf[Decoder[K]]
val valueDecoder = classTag[T].runtimeClass.getConstructor(classOf[VerifiableProperties])
.newInstance(consumerConfig.props)
.asInstanceOf[Decoder[V]]
// Create threads for each topic/message Stream we are listening
val topicMessageStreams = consumerConnector.createMessageStreams(
topics, keyDecoder, valueDecoder)
val executorPool =
ThreadUtils.newDaemonFixedThreadPool(topics.values.sum, "KafkaMessageHandler")
try {
// Start the messages handler for each partition
topicMessageStreams.values.foreach { streams =>
streams.foreach { stream => executorPool.submit(new MessageHandler(stream)) }
}
} finally {
executorPool.shutdown() // Just causes threads to terminate after work is done
}
}
// Handles Kafka messages
private class MessageHandler(stream: KafkaStream[K, V])
extends Runnable {
def run() {
logInfo("Starting MessageHandler.")
try {
val streamIterator = stream.iterator()
while (streamIterator.hasNext()) {
val msgAndMetadata = streamIterator.next()
store((msgAndMetadata.key, msgAndMetadata.message, msgAndMetadata.topic))
}
} catch {
case e: Throwable => reportError("Error handling message; exiting", e)
}
}
}
}