对于一个字符串,下面的代码删除了unicode字符&新行/回车:
t = "We've\xe5\xcabeen invited to attend TEDxTeen, an independently organized TED event focused on encouraging youth to find \x89\xdb\xcfsimply irresistible\x89\xdb\x9d solutions to the complex issues we face every day.,"
t2 = t.decode('unicode_escape').encode('ascii', 'ignore').strip()
import sys
sys.stdout.write(t2.strip('\n\r'))
但是当我尝试在pandas中编写一个函数来将它应用于列的每个单元格时,它会因为属性错误而失败,或者我收到一条警告,表示试图在一个切片的副本上设置一个值来自DataFrame
def clean_text(row):
row= row["text"].decode('unicode_escape').encode('ascii', 'ignore')#.strip()
import sys
sys.stdout.write(row.strip('\n\r'))
return row
应用于我的数据框:
df["text"] = df.apply(clean_text, axis=1)
如何将此代码应用于系列的每个元素?
答案 0 :(得分:8)
问题似乎是您尝试访问和更改row['text']
并在执行应用功能时返回行本身,当您在apply
上执行DataFrame
时,它会应用于每个系列,所以如果改为这应该有帮助:
import pandas as pd
df = pd.DataFrame([t for _ in range(5)], columns=['text'])
df
text
0 We've������been invited to attend TEDxTeen, an ind...
1 We've������been invited to attend TEDxTeen, an ind...
2 We've������been invited to attend TEDxTeen, an ind...
3 We've������been invited to attend TEDxTeen, an ind...
4 We've������been invited to attend TEDxTeen, an ind...
def clean_text(row):
# return the list of decoded cell in the Series instead
return [r.decode('unicode_escape').encode('ascii', 'ignore') for r in row]
df['text'] = df.apply(clean_text)
df
text
0 We'vebeen invited to attend TEDxTeen, an indep...
1 We'vebeen invited to attend TEDxTeen, an indep...
2 We'vebeen invited to attend TEDxTeen, an indep...
3 We'vebeen invited to attend TEDxTeen, an indep...
4 We'vebeen invited to attend TEDxTeen, an indep...
或者,您可以使用lambda
,如下所示,并直接仅适用于text
列:
df['text'] = df['text'].apply(lambda x: x.decode('unicode_escape').\
encode('ascii', 'ignore').\
strip())
答案 1 :(得分:6)
我实际上无法重现您的错误:以下代码为我运行而没有错误或警告。
df = pd.DataFrame([t,t,t],columns = ['text'])
df["text"] = df.apply(clean_text, axis=1)
如果有帮助,我认为解决此类问题的更多“熊猫”方法可能是使用带有DataFrame.str
方法之一的正则表达式:
df["text"] = df.text.str.replace('[^\x00-\x7F]','')
答案 2 :(得分:1)
像这样,其中column_to_convert是您要转换的列:
series = df['column_to_convert']
df["text"] = [s.encode('ascii', 'ignore').strip()
for s in series.str.decode('unicode_escape')]