我有一个numpy矩阵A,我需要一个函数来计算(A [i,j] /第i列中所有元素的总和) - A [i,j] / j-中所有元素的总和排 它适用于A中的每个元素。
我已经尝试过写下以下内容:
a = A.sum(axis=0)
b = A.sum(axis=1)
for i in A:
for j in i:
f = A[i,j]/a(i) - A[i,j]/b(j)
答案 0 :(得分:2)
您应该寻找一个矢量化解决方案,而不是循环遍历所有元素
A/A.sum(axis=0)[np.newaxis,:] - A/A.sum(axis=1)[:,np.newaxis]
假设
In [35]: A = np.random.rand(10,3)
Out[35]:
array([[ 0.26070074, 0.58940996, 0.78665012],
[ 0.7420538 , 0.72214655, 0.66633183],
[ 0.67189673, 0.67298124, 0.04628626],
[ 0.93935375, 0.45030544, 0.38292913],
[ 0.45410731, 0.26557299, 0.09573014],
[ 0.99872912, 0.31092656, 0.46294278],
[ 0.61108329, 0.71140089, 0.85548017],
[ 0.80012964, 0.64749927, 0.3292407 ],
[ 0.33229818, 0.01810878, 0.44460486],
[ 0.86525557, 0.0569463 , 0.43183502]])
您可以执行以下操作。
In [36]: A*(1/A.sum(axis=0)[np.newaxis,:] - 1/A.sum(axis=1)[:,np.newaxis])
Out[36]:
array([[-0.12022572, -0.22751579, -0.3058817 ],
[-0.23713606, -0.17649948, -0.16474676],
[-0.3823249 , -0.33236228, -0.0229904 ],
[-0.38921906, -0.1527391 , -0.13097127],
[-0.48888156, -0.26594996, -0.09613741],
[-0.41381789, -0.10546217, -0.15833642],
[-0.18903571, -0.16660122, -0.20276794],
[-0.33044427, -0.21874513, -0.11216096],
[-0.36820095, -0.01870431, -0.46048657],
[-0.5094047 , -0.02924623, -0.22300407]])
答案 1 :(得分:0)
我希望这可以提供帮助:
def f(i,j,A):
return A[i,j] * ( 1. / np.sum(A[i,]) ) - ( 1. / np.sum(A[:,j]) )