算术编码和解码算法Python

时间:2015-05-16 17:29:22

标签: python encoding decoding

我正在研究算术编码和解码算法的自适应实现,我已经实现了python但是对于某些字符串,我得到了正确的答案但是对于其他人我得到了正确的答案。

当程序首次启动时,会提供一个参数来确定符号概率改变的频率。例如,如果参数是10,则在发送/接收10个符号之后,根据到目前为止发送/接收的所有符号改变概率表。因此,域名分配也会发生变化。最初,我有均匀分布[a-z],概率为1/26。

它不适用于" heloworldheloworld"还有很多其他案例。

另外,我已经了解了下溢问题但我该如何解决这个问题。

import sys
import random
import string


def encode(encode_str, N):
    count = dict.fromkeys(string.ascii_lowercase, 1)                                        # probability table
    cdf_range = dict.fromkeys(string.ascii_lowercase, 0)
    pdf = dict.fromkeys(string.ascii_lowercase, 0)

    low = 0
    high = float(1)/float(26)

    for key, value in sorted(cdf_range.iteritems()):
        cdf_range[key] = [low, high]
        low = high
        high += float(1)/float(26)

    for key, value in sorted(pdf.iteritems()):
        pdf[key] = float(1)/float(26)

    # for key, value in sorted(cdf_range.iteritems()):
    #   print key, value

    # for key, value in sorted(pdf.iteritems()):
    #   print key, value

    i = 26

    lower_bound = 0                                                                     # upper bound
    upper_bound = 1                                                                     # lower bound

    u = 0

    # go thru every symbol in the string
    for sym in encode_str:
        i += 1
        u += 1
        count[sym] += 1

        curr_range = upper_bound - lower_bound                                          # current range
        upper_bound = lower_bound + (curr_range * cdf_range[sym][1])                    # upper_bound
        lower_bound = lower_bound + (curr_range * cdf_range[sym][0])                    # lower bound

        # update cdf_range after N symbols have been read
        if (u == N):
            u = 0

            for key, value in sorted(pdf.iteritems()):
                pdf[key] = float(count[key])/float(i)

            low = 0
            for key, value in sorted(cdf_range.iteritems()):
                high = pdf[key] + low
                cdf_range[key] = [low, high]
                low = high

    return lower_bound

def decode(encoded, strlen, every):
    decoded_str = ""

    count = dict.fromkeys(string.ascii_lowercase, 1)                                        # probability table
    cdf_range = dict.fromkeys(string.ascii_lowercase, 0)
    pdf = dict.fromkeys(string.ascii_lowercase, 0)

    low = 0
    high = float(1)/float(26)

    for key, value in sorted(cdf_range.iteritems()):
        cdf_range[key] = [low, high]
        low = high
        high += float(1)/float(26)

    for key, value in sorted(pdf.iteritems()):
        pdf[key] = float(1)/float(26)


    lower_bound = 0                                                                     # upper bound
    upper_bound = 1                                                                     # lower bound

    k = 0

    while (strlen != len(decoded_str)):
        for key, value in sorted(pdf.iteritems()):

            curr_range = upper_bound - lower_bound                                      # current range
            upper_cand = lower_bound + (curr_range * cdf_range[key][1])                 # upper_bound
            lower_cand = lower_bound + (curr_range * cdf_range[key][0])                 # lower bound

            if (lower_cand <= encoded < upper_cand):
                k += 1
                decoded_str += key

                if (strlen == len(decoded_str)):
                    break

                upper_bound = upper_cand
                lower_bound = lower_cand

                count[key] += 1

                if (k == every):
                    k = 0
                    for key, value in sorted(pdf.iteritems()):
                        pdf[key] = float(count[key])/float(26+len(decoded_str))

                    low = 0
                    for key, value in sorted(cdf_range.iteritems()):
                        high = pdf[key] + low
                        cdf_range[key] = [low, high]
                        low = high

    print decoded_str

def main():
    count = 10
    encode_str = "yyyyuuuuyyyy"
    strlen = len(encode_str)
    every = 3
    encoded = encode(encode_str, every)
    decoded = decode(encoded, strlen, every)

if __name__ == '__main__':
    main()

2 个答案:

答案 0 :(得分:1)

错误出现在大约12个字符长度的字符串中。这接近python使用的双精度,可能会导致你的问题。

我使用BigFloat库(具有任意精度)进行了快速测试,得到了正确答案:

import sys
import random
import string
from bigfloat import *

factor = BigFloat(1)/BigFloat(26)

def encode(encode_str, N):
    count = dict.fromkeys(string.ascii_lowercase, 1)                                        # probability table
    cdf_range = dict.fromkeys(string.ascii_lowercase, 0)
    pdf = dict.fromkeys(string.ascii_lowercase, 0)

    with precision(200) + RoundTowardZero:
        low = 0
        high = factor

        for key, value in sorted(cdf_range.iteritems()):
            cdf_range[key] = [low, high]
            low = high
            high += factor

        for key, value in sorted(pdf.iteritems()):
            pdf[key] = factor

        # for key, value in sorted(cdf_range.iteritems()):
        #   print key, value

        # for key, value in sorted(pdf.iteritems()):
        #   print key, value

        i = 26

        lower_bound = 0                         # upper bound
        upper_bound = 1                         # lower bound

        u = 0

        # go thru every symbol in the string
        for sym in encode_str:
            i += 1
            u += 1
            count[sym] += 1

            curr_range = upper_bound - lower_bound                                          # current range
            upper_bound = lower_bound + (curr_range * cdf_range[sym][1])                    # upper_bound
            lower_bound = lower_bound + (curr_range * cdf_range[sym][0])                    # lower bound

            # update cdf_range after N symbols have been read
            if (u == N):
                u = 0

                for key, value in sorted(pdf.iteritems()):
                    pdf[key] = BigFloat(count[key])/BigFloat(i)

                low = 0
                for key, value in sorted(cdf_range.iteritems()):
                    high = pdf[key] + low
                    cdf_range[key] = [low, high]
                    low = high

    return lower_bound

def decode(encoded, strlen, every):
    decoded_str = ""

    count = dict.fromkeys(string.ascii_lowercase, 1)                                        # probability table
    cdf_range = dict.fromkeys(string.ascii_lowercase, 0)
    pdf = dict.fromkeys(string.ascii_lowercase, 0)


    with precision(200) + RoundTowardZero:
        low = 0
        high = factor

        for key, value in sorted(cdf_range.iteritems()):
            cdf_range[key] = [low, high]
            low = high
            high += factor

        for key, value in sorted(pdf.iteritems()):
            pdf[key] = factor


        lower_bound = BigFloat(0)                           # upper bound
        upper_bound = BigFloat(1)                           # lower bound

        k = 0

        while (strlen != len(decoded_str)):
            for key, value in sorted(pdf.iteritems()):

                curr_range = upper_bound - lower_bound                                      # current range
                upper_cand = lower_bound + (curr_range * cdf_range[key][1])                 # upper_bound
                lower_cand = lower_bound + (curr_range * cdf_range[key][0])                 # lower bound

                if (lower_cand <= encoded < upper_cand):
                    k += 1
                    decoded_str += key

                    if (strlen == len(decoded_str)):
                        break

                    upper_bound = upper_cand
                    lower_bound = lower_cand

                    count[key] += 1

                    if (k == every):
                        k = 0
                        for key, value in sorted(pdf.iteritems()):
                            pdf[key] = BigFloat(count[key])/BigFloat(26+len(decoded_str))

                        low = 0
                        for key, value in sorted(cdf_range.iteritems()):
                            high = pdf[key] + low
                            cdf_range[key] = [low, high]
                            low = high

        print decoded_str

def main():
    count = 10
    encode_str = "heloworldheloworld"
    strlen = len(encode_str)
    every = 3
    encoded = encode(encode_str, every)
    decoded = decode(encoded, strlen, every)

if __name__ == '__main__':
    main()

答案 1 :(得分:1)

这种情况发生了,因为Python float具有53位精度。你不能编码很长的字符串。

您可能希望使用decimal代替floats来获得任意精度

import sys
import random
import string

import decimal
from decimal import Decimal

decimal.getcontext().prec=100

def encode(encode_str, N):
    count = dict.fromkeys(string.ascii_lowercase, 1)                                        # probability table
    cdf_range = dict.fromkeys(string.ascii_lowercase, 0)
    pdf = dict.fromkeys(string.ascii_lowercase, 0)

    low = 0
    high = Decimal(1)/Decimal(26)

    for key, value in sorted(cdf_range.iteritems()):
        cdf_range[key] = [low, high]
        low = high
        high += Decimal(1)/Decimal(26)

    for key, value in sorted(pdf.iteritems()):
        pdf[key] = Decimal(1)/Decimal(26)

    # for key, value in sorted(cdf_range.iteritems()):
    #   print key, value

    # for key, value in sorted(pdf.iteritems()):
    #   print key, value

    i = 26

    lower_bound = 0                                                                     # upper bound
    upper_bound = 1                                                                     # lower bound

    u = 0

    # go thru every symbol in the string
    for sym in encode_str:
        i += 1
        u += 1
        count[sym] += 1

        curr_range = upper_bound - lower_bound                                          # current range
        upper_bound = lower_bound + (curr_range * cdf_range[sym][1])                    # upper_bound
        lower_bound = lower_bound + (curr_range * cdf_range[sym][0])                    # lower bound

        # update cdf_range after N symbols have been read
        if (u == N):
            u = 0

            for key, value in sorted(pdf.iteritems()):
                pdf[key] = Decimal(count[key])/Decimal(i)

            low = 0
            for key, value in sorted(cdf_range.iteritems()):
                high = pdf[key] + low
                cdf_range[key] = [low, high]
                low = high

    return lower_bound

def decode(encoded, strlen, every):
    decoded_str = ""

    count = dict.fromkeys(string.ascii_lowercase, 1)                                        # probability table
    cdf_range = dict.fromkeys(string.ascii_lowercase, 0)
    pdf = dict.fromkeys(string.ascii_lowercase, 0)

    low = 0
    high = Decimal(1)/Decimal(26)

    for key, value in sorted(cdf_range.iteritems()):
        cdf_range[key] = [low, high]
        low = high
        high += Decimal(1)/Decimal(26)

    for key, value in sorted(pdf.iteritems()):
        pdf[key] = Decimal(1)/Decimal(26)


    lower_bound = 0                                                                     # upper bound
    upper_bound = 1                                                                     # lower bound

    k = 0

    while (strlen != len(decoded_str)):
        for key, value in sorted(pdf.iteritems()):

            curr_range = upper_bound - lower_bound                                      # current range
            upper_cand = lower_bound + (curr_range * cdf_range[key][1])                 # upper_bound
            lower_cand = lower_bound + (curr_range * cdf_range[key][0])                 # lower bound

            if (lower_cand <= encoded < upper_cand):
                k += 1
                decoded_str += key

                if (strlen == len(decoded_str)):
                    break

                upper_bound = upper_cand
                lower_bound = lower_cand

                count[key] += 1

                if (k == every):
                    k = 0
                    for key, value in sorted(pdf.iteritems()):
                        pdf[key] = Decimal(count[key])/Decimal(26+len(decoded_str))

                    low = 0
                    for key, value in sorted(cdf_range.iteritems()):
                        high = pdf[key] + low
                        cdf_range[key] = [low, high]
                        low = high

    print decoded_str

def main():
    count = 10
    encode_str = "heloworldheloworld"
    strlen = len(encode_str)
    every = 3
    encoded = encode(encode_str, every)
    decoded = decode(encoded, strlen, every)

if __name__ == '__main__':
    main()