我在采访中被要求打印二叉树的边界。例如。
1
/ \
2 3
/ \ / \
4 5 6 7
/ \ \
8 9 10
答案是:1,2,4,8,9,10,7,3
我已经给出了以下答案。
第一种方法:
我使用了 Bool 变量来解决上述问题。
void printLeftEdges(BinaryTree *p, bool print) {
if (!p) return;
if (print || (!p->left && !p->right))
cout << p->data << " ";
printLeftEdges(p->left, print);
printLeftEdges(p->right, false);
}
void printRightEdges(BinaryTree *p, bool print) {
if (!p) return;
printRightEdges(p->left, false);
printRightEdges(p->right, print);
if (print || (!p->left && !p->right))
cout << p->data << " ";
}
void printOuterEdges(BinaryTree *root) {
if (!root) return;
cout << root->data << " ";
printLeftEdges(root->left, true);
printRightEdges(root->right, true);
}
他的回答:您已多次使用 Bool 变量。你能不解决这个问题吗?
第二种方法:
我只是使用树遍历来解决这个问题。
1. Print the left boundary in top-down manner.
2. Print all leaf nodes from left to right, which can again be sub-divided into two sub-parts:
2.1 Print all leaf nodes of left sub-tree from left to right.
2.2 Print all leaf nodes of right subtree from left to right.
3. Print the right boundary in bottom-up manner.
他的回答:他对这种方法也不满意。他告诉你,你遍历树3次。那太过分了。如果您有任何解决方案,请提供其他解决方案。
第三种方法: 这次我去了 Level Order traversal(BFS)。
1: Print starting and ending node of each level
2: For each other node check if its both the children are <b>NULL</b> then print that node too.
他的回答:他对这种方法似乎也不满意,因为这种方法需要额外的O(n)内存。
我的问题是告诉我一个遍历树的方法,不要使用任何Bool变量,也不要使用任何额外的内存。有可能吗?
答案 0 :(得分:19)
我想这应该可以解决问题:
traverse(BinaryTree *root)
{
if (!root) return;
cout << p->data << " ";
if (root->left ) traverseL(root->left ); //special function for outer left
if (root->right) traverseR(root->right); //special function for outer right
}
traverseL(BinaryTree *p)
{
cout << p->data << " ";
if (root->left ) traverseL(root->left ); //still in outer left
if (root->right) traverseC(root->right);
}
traverseR(BinaryTree *p)
{
if (root->left ) traverseC(root->left );
if (root->right) traverseR(root->right); //still in outer right
cout << p->data << " ";
}
traverseC(BinaryTree *p)
{
if (!root->left && !root->right) //bottom reached
cout << p->data << " ";
else
{
if (root->left ) traverseC(root->left );
if (root->right) traverseC(root->right);
}
}
从traverse
功能开始。
在每个方法的开头摆脱了null查询(避免在每一端都有一个函数调用)。
不需要bool变量,只需使用三种不同的遍历方法:
答案 1 :(得分:1)
下面是Python3中的递归解决方案,时间复杂度为O(n)。这里的算法是从上到下打印最左边的节点,从左到右打印叶节点,从下到上打印最多的节点。为左右树遍历添加布尔标志(isLeft,isRight)
简化了代码并驱动了O(n)的时间复杂度。
#Print tree boundary nodes
def TreeBoundry(node,isLeft,isRight):
#Left most node and leaf nodes
if(isLeft or isLeaf(node)): print(node.data,end=' ')
#Process next left node
if(node.getLeft() is not None): TreeBoundry(node.getLeft(), True,False)
#Process next right node
if(node.getRight() is not None):TreeBoundry(node.getRight(), False,True)
#Right most node
if(isRight and not isLeft and not isLeaf(node)):print(node.data,end=' ')
#Check is a node is leaf
def isLeaf(node):
if (node.getLeft() is None and node.getRight() is None):
return True
else:
return False
#Get started
#https://github.com/harishvc/challenges/blob/master/binary-tree-edge-nodes.py
TreeBoundry(root,True,True)
答案 2 :(得分:1)
方法O(n) No extra space and single traversal of tree.
我将树节点划分为四种类型的节点
类型1 - &gt;形成左边界的节点(例如8)
0型 - &gt;不形成边界的节点(例如12)
类型3 - &gt;形成右边界的节点(例如22)
叶节数(例如4,10,14)
在我的方法中,我只是做树遍历的修复方法(刚刚修改过),其中我的函数是这种形式
void recFunc(btNode *temp,int type)
{
//Leaf Nodes
if((temp->left == NULL)&&(temp->right == NULL))
cout << temp->data << " ";
// type -1 Nodes must be printed before their children
else if(type == 1)cout << temp->data << " ";
else {;}
if(type == 3)
{
if(temp->left)recFunc(temp->left,0);
if(temp->right)recFunc(temp->right,3);
//type 3 nodes must be printed after their children
cout << temp->data << " ";
}
else if(type == 1)
{
if(temp->left)recFunc(temp->left,1);
if(temp->right)recFunc(temp->right,0);
}
else if(type == 0)
{
if(temp->left)recFunc(temp->left,0);
if(temp->right)recFunc(temp->right,0);
}
else {;}
}
我修改了
答案 3 :(得分:0)
// 4差异列表,用于解决方案的4个不同部分 1)左边框2)右边框3)左树上的叶子4)右树上的叶子
public class PRintBinaryTreeBoundary {
ArrayList<TreeNode> leftBorderList=new ArrayList<>();
ArrayList<TreeNode> leftLEafNode=new ArrayList<>();
ArrayList<TreeNode> rightBorderList=new ArrayList<>();
ArrayList<TreeNode> rightLEafNode=new ArrayList<>();
public static void main(String[] args) {
// TODO Auto-generated method stub
/* 1
/ \
2 3
/ \ / \
4 5 6 7
/ \ \
8 9 10*/
TreeNode one=new TreeNode(1);
TreeNode two=new TreeNode(2);
TreeNode three=new TreeNode(3);
TreeNode four=new TreeNode(4);
TreeNode five=new TreeNode(5);
TreeNode six=new TreeNode(6);
TreeNode seven=new TreeNode(7);
TreeNode eight=new TreeNode(8);
TreeNode nine=new TreeNode(9);
TreeNode ten=new TreeNode(10);
one.left=two; one.right=three;
two.left=four;two.right=five;
three.left=six;three.right=seven;
five.left=eight;
six.right=nine;
seven.right=ten;
PRintBinaryTreeBoundary p=new PRintBinaryTreeBoundary();
p.print(one);
}
private void print(TreeNode one) {
System.out.println(one.val);
populateLeftBorderList(one.left);
populateRightBorderList(one.right);
populateLeafOfLeftTree(one.left);
populateLeafOfRightTree(one.right);
System.out.println(this.leftBorderList);
System.out.println(this.leftLEafNode);
System.out.println(this.rightLEafNode);
Collections.reverse(this.rightBorderList);
System.out.println(this.rightBorderList);
}
private void populateLeftBorderList(TreeNode node) {
TreeNode n = node;
while (n != null) {
this.leftBorderList.add(n);
n = n.left;
}
}
private void populateRightBorderList(TreeNode node) {
TreeNode n = node;
while (n != null) {
this.rightBorderList.add(n);
n = n.right;
}
}
private void populateLeafOfLeftTree(TreeNode leftnode) {
Queue<TreeNode> q = new LinkedList<>();
q.add(leftnode);
while (!q.isEmpty()) {
TreeNode n = q.remove();
if (null == n.left && null == n.right && !this.leftBorderList.contains(n)) {
leftLEafNode.add(n);
}
if (null != n.left)
q.add(n.left);
if (null != n.right)
q.add(n.right);
}
}
private void populateLeafOfRightTree(TreeNode rightNode) {
Queue<TreeNode> q = new LinkedList<>();
q.add(rightNode);
while (!q.isEmpty()) {
TreeNode n = q.remove();
if (null == n.left && null == n.right && !this.rightBorderList.contains(n)) {
rightLEafNode.add(n);
}
if (null != n.left)
q.add(n.left);
if (null != n.right)
q.add(n.right);
}
}
}
答案 4 :(得分:0)
希望这会有所帮助:
// Java program to print boundary traversal of binary tree
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class Node {
int data;
Node left, right;
Node(int item)
{
data = item;
left = right = null;
}
}
class BinaryTree {
Node root;
// A simple function to print leaf nodes of a binary tree
void printLeaves(Node node)
{
if (node != null) {
printLeaves(node.left);
// Print it if it is a leaf node
if (node.left == null && node.right == null)
System.out.print(node.data + " ");
printLeaves(node.right);
}
}
// A function to print all left boundary nodes, except a leaf node.
// Print the nodes in TOP DOWN manner
void printBoundaryLeft(Node node)
{
if (node != null) {
if (node.left != null) {
// to ensure top down order, print the node
// before calling itself for left subtree
System.out.print(node.data + " ");
printBoundaryLeft(node.left);
}
else if (node.right != null) {
System.out.print(node.data + " ");
printBoundaryLeft(node.right);
}
// do nothing if it is a leaf node, this way we avoid
// duplicates in output
}
}
// A function to print all right boundary nodes, except a leaf node
// Print the nodes in BOTTOM UP manner
void printBoundaryRight(Node node)
{
if (node != null) {
if (node.right != null) {
// to ensure bottom up order, first call for right
// subtree, then print this node
printBoundaryRight(node.right);
System.out.print(node.data + " ");
}
else if (node.left != null) {
printBoundaryRight(node.left);
System.out.print(node.data + " ");
}
// do nothing if it is a leaf node, this way we avoid
// duplicates in output
}
}
// A function to do boundary traversal of a given binary tree
void printBoundary(Node node)
{
if (node != null) {
System.out.print(node.data + " ");
// Print the left boundary in top-down manner.
printBoundaryLeft(node.left);
// Print all leaf nodes
printLeaves(node.left);
printLeaves(node.right);
// Print the right boundary in bottom-up manner
printBoundaryRight(node.right);
}
}
// Driver program to test above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(20);
tree.root.left = new Node(8);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(12);
tree.root.left.right.left = new Node(10);
tree.root.left.right.right = new Node(14);
tree.root.right = new Node(22);
tree.root.right.right = new Node(25);
tree.printBoundary(tree.root);
}
}
答案 5 :(得分:0)
下面是Java O(n)时间复杂度解决方案,它解决了计算重复项的问题(例如:左节点也是叶节点)
class Node {
Node left;
Node right;
int data;
Node(int d) {
data = d;
left = right = null;
}
}
class BinaryTree {
Node root;
public void getBoundary() {
preorderLeft(root);
inorderLeaves(root);
postorderRight(root);
}
public boolean isLeaf(Node node) {
if (node != null && node.left == null && node.right == null) return true;
return false;
}
public void preorderLeft(Node start) {
if (start != null && isLeaf(start) == false) System.out.print(start.data + " ");
if (start.left != null) preorderLeftSide(start.left);
}
public void inorderLeaves(Node start) {
if(start == null) return;
if(start.left != null) inorderLeaves(start.left);
if(start.left == null && start.right == null) System.out.print(start.data + " ");
if(start.right != null) inorderLeaves(start.right);
}
public void postorderRight(Node start) {
if(start.right != null) postorderRightSide(start.right);
if(start != null && isLeaf(start) == false) System.out.print(start.data + " ");
}
}
此YouTube视频非常有帮助。作者写了解释每种方法的注释,并说明了如何跳过重复的方法。 https://youtu.be/7GzuxmZ34cI
答案 6 :(得分:0)
通过使用到根节点和水平的垂直距离,我们可以使用列表和地图来解决它。
PUT
其中d指向从当前节点到根的垂直距离 和l指向当前节点从0开始的级别
答案 7 :(得分:0)
以下python解决方案为我工作。它处理所有情况。 基于@azt的解决方案
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def printLeaves(root):
if (root):
printLeaves(root.left)
if root.left is None and root.right is None:
print(root.data),
printLeaves(root.right)
def printBoundaryC(node):
if not node.left or not node.right:
print(node.data)
if node.left:
printBoundaryC(node.left)
if node.right:
printBoundaryC(node.right)
def printBoundaryLeft(root):
print(root.data)
if root.left:
printBoundaryLeft(root.left)
if root.right:
printBoundaryC(root.right)
def printBoundaryRight(root):
if root.right:
printBoundaryRight(root.right)
elif root.left:
printBoundaryC(root.left)
print(root.data)
def printBoundary(root):
if (root):
print(root.data)
if root.left:
printBoundaryLeft(root.left)
if root.right:
printBoundaryRight(root.right)
root = Node(20)
root.left = Node(8)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.left.right = Node(5)
root.left.right.right = Node(14)
root.right = Node(22)
root.right.right = Node(25)
printBoundary(root)