我的Floyd-Warshall C ++实现中的错误

时间:2010-06-12 02:13:07

标签: c++ graph floyd-warshall

我已经为我的大学完成了一项任务,已经成功实施了Dijkstra和Bellman-Ford,但我在这方面遇到了麻烦。一切看起来都很好,但它没有给我正确答案。

以下是代码:

void FloydWarshall()
{
    //Also assume that n is the number of vertices and edgeCost(i,i) = 0

    int path[500][500];

    /* A 2-dimensional matrix. At each step in the algorithm, path[i][j] is the shortest path
       from i to j using intermediate vertices (1..k−1).  Each path[i][j] is initialized to
       edgeCost(i,j) or infinity if there is no edge between i and j.
    */

    for(int i = 0 ; i <= nvertices ; i++)
        for(int j = 0 ; j <= nvertices ; j++)
            path[i][j] = INFINITY;

    for(int j = 0 ; j < narestas ; j++) //narestas = number of edges
    {
        path[arestas[j]->v1][arestas[j]->v2] = arestas[j]->peso; //peso = weight of the edge (aresta = edge)
        path[arestas[j]->v2][arestas[j]->v1] = arestas[j]->peso;
    }

    for(int i = 0 ; i <= nvertices ; i++) //path(i, i) = 0
        path[i][i] = 0;

    //test print, it's working fine
    //printf("\n\n\nResultado FloydWarshall:\n");
    //for(int i = 1 ; i <= nvertices ; i++)
    //    printf("distancia ao vertice %d:  %d\n", i, path[1][i]);


    // Here's the problem, it messes up, and even a edge who costs 4, and the minimum is 4, it prints 2.

    //for k = 1 to n
    for(int k = 1 ; k <= nvertices ; k++)
       //for i = 1 to n
       for(int i = 1 ; i <= nvertices ; i++)
           //for j := 1 to n
           for(int j = 1 ; j <= nvertices ; j++)
               if(path[i][j] > path[i][k] + path[k][j])
                   path[i][j] = path[i][k] + path[k][j];


    printf("\n\n\nResultado FloydWarshall:\n");
    for(int i = 1 ; i <= nvertices ; i++)
        printf("distancia ao vertice %d:  %d\n", i, path[1][i]);
}

我正在使用我制作的图表示例:

6 7

1 2 4
1 5 1
2 3 1
2 5 2
5 6 3
6 4 6
3 4 2

表示我们有6个顶点(1到6),7个边(1,2),重量为4 ......等。

如果有人需要更多信息,我很乐意给它,只是厌倦了查看这段代码并且没有发现错误。

3 个答案:

答案 0 :(得分:2)

没关系,我休息一下吃东西,发现错误。

Infinity被定义为INT_MAX,因此只要你向它添加内容,它就会变为负数。

我只定义了一些大的东西(对于我的问题,比如超过5000,没有图形路径会占用更多),并且它工作正常。

但是,我可能知道你为什么建议尹?我没弄明白。

由于

答案 1 :(得分:0)

 if(path[i][j] > path[i][k] + path[k][j])
  path[i][j] = path[i][k] + path[k][j];

在这里做一些检查。例如如果path [i] [k]和path [k] [j]是非无限的,并且i!= j i!= k和k!= j。

答案 2 :(得分:0)

此外,迭代的开始和结束不是几个地方的一个路径的开始和结束?您可能希望它们从0运行到nvertices-1;即for (int i = 0; i < nvertices; i++)