我有点像初学程序员,正在寻找帮助和解决问题。我希望将字符串中的ID号提取到新列中,然后填写缺少的数字。
我正在使用pandas数据帧,我有以下一组街道名称,其中一些有ID号码而其他人失踪:
*Start station*:
"19th & L St (31224)"
"14th & R St NW (31202)"
"Paul Rd & Pl NW (31602)"
"14th & R St NW"
"19th & L St"
"Paul Rd & Pl NW"
My desired outcome:
*Start station* *StartStatNum*
"14th & R St NW" 31202
"19th & L St" 31224
"Paul Rd & Pl NW" 31602
"14th & R St NW" 31202
"19th & L St" 31224
"Paul Rd & Pl NW" 31602
在我分裂的第一步后,我遇到了困难。 我可以根据位置拆分以下内容:
def Stat_Num(Stat_Num):
return Stat_Num.split('(')[-1].split(')')[0].strip()
db["StartStatNum"] = pd.DataFrame({'Num':db['Start station'].apply(Stat_Num)})
But this gives:
*Start station* *StartStatNum*
"19th & L St (31224)" 31202
"14th & R St NW (31202)" 31224
"Paul Rd & Pl NW (31602)" 31602
"14th & R St NW" "14th & R St NW"
"19th & L St" "19th & L St"
"Paul Rd & Pl NW" "Paul Rd & Pl NW"
当我想使用我没有的电台ID编号查找/填写StartStatNum时会出现问题。
我一直试图了解str.extract, str.contains, re.findall
并尝试以下作为可能的垫脚石:
db['Start_S2'] = db['Start_Stat_Num'].str.extract(" ((\d+))")
db['Start_S2'] = db['Start station'].str.contains(" ((\d+))")
db['Start_S2'] = db['Start station'].re.findall(" ((\d+))")
我还从here
尝试了以下内容def parseIntegers(mixedList):
return [x for x in db['Start station'] if (isinstance(x, int) or isinstance(x, long)) and not isinstance(x, bool)]
然而,当我传入值时,我得到一个带有1个值的列表'x'。 作为一个菜鸟,我不认为走模式路线是最好的,因为它也会采取不需要的整数(虽然我可能会转向Nan的,因为它们将小于30000(ID号的最低值) 我也有一个想法,它可能是一个简单的我忽略,但经过大约20个小时和大量的搜索,我有点不知所措。
任何帮助都会非常有帮助。
答案 0 :(得分:1)
解决方案可能是使用转换
创建数据框station -> id
喜欢
l = ["19th & L St (31224)",
"14th & R St NW (31202)",
"Paul Rd & Pl NW (31602)",
"14th & R St NW",
"19th & L St",
"Paul Rd & Pl NW",]
df = pd.DataFrame( {"station":l})
df_dict = df['station'].str.extract("(?P<station_name>.*)\((?P<id>\d+)\)").dropna()
print df_dict
# result:
station_name id
0 19th & L St 31224
1 14th & R St NW 31202
2 Paul Rd & Pl NW 31602
[3 rows x 2 columns]
从那里开始,你可以使用一些列表理解:
l2 = [ [row["station_name"], row["id"]]
for line in l
for k,row in df_dict.iterrows()
if row["station_name"].strip() in line]
得到:
[['19th & L St ', '31224'],
['14th & R St NW ', '31202'],
['Paul Rd & Pl NW ', '31602'],
['14th & R St NW ', '31202'],
['19th & L St ', '31224'],
['Paul Rd & Pl NW ', '31602']]
我允许你在数据帧中转换后者......
最后一部分可能有更好的解决方案......
答案 1 :(得分:1)
这是一种对我有用的方法,首先提取大括号中的数字:
In [71]:
df['start stat num'] = df['Start station'].str.findall(r'\((\d+)\)').str[0]
df
Out[71]:
Start station start stat num
0 19th & L St (31224) 31224
1 14th & R St NW (31202) 31202
2 Paul Rd & Pl NW (31602) 31602
3 14th & R St NW NaN
4 19th & L St NaN
5 Paul Rd & Pl NW NaN
现在删除号码,因为我们不再需要它了:
In [72]:
df['Start station'] = df['Start station'].str.split(' \(').str[0]
df
Out[72]:
Start station start stat num
0 19th & L St 31224
1 14th & R St NW 31202
2 Paul Rd & Pl NW 31602
3 14th & R St NW NaN
4 19th & L St NaN
5 Paul Rd & Pl NW NaN
现在我们可以通过调用df上的map并删除NaN
行来填写缺少的站号,并将站名设置为索引,这将查找站名并返回站号:< / p>
In [73]:
df['start stat num'] = df['Start station'].map(df.dropna().set_index('Start station')['start stat num'])
df
Out[73]:
Start station start stat num
0 19th & L St 31224
1 14th & R St NW 31202
2 Paul Rd & Pl NW 31602
3 14th & R St NW 31202
4 19th & L St 31224
5 Paul Rd & Pl NW 31602