我正在使用NumPy在图表上查找交叉点,但isClose
每个交叉点返回多个值
所以,我将尝试找到他们的平均值。但首先,我想隔离相似的值。这也是我觉得有用的技巧。
我有一个名为idx
的交叉点的x值列表,如下所示
[-8.67735471 -8.63727455 -8.59719439 -5.5511022 -5.51102204 -5.47094188
-5.43086172 -2.4248497 -2.38476954 -2.34468938 -2.30460922 0.74148297
0.78156313 0.82164329 3.86773547 3.90781563 3.94789579 3.98797595
7.03406814 7.0741483 7.11422846]
我希望将其分成每个由相似数字组成的列表。
这是我到目前为止所做的:
n = 0
for i in range(len(idx)):
try:
if (idx[n]-idx[n-1])<0.5:
sdx.append(idx[n-1])
else:
print(sdx)
sdx = []
except:
sdx.append(idx[n-1])
n = n+1
它在很大程度上起作用,但它会忘记一些数字:
[-8.6773547094188377, -8.6372745490981959]
[-5.5511022044088181, -5.5110220440881763, -5.4709418837675354]
[-2.4248496993987976, -2.3847695390781567, -2.3446893787575149]
[0.7414829659318638, 0.78156312625250379]
[3.8677354709418825, 3.9078156312625243, 3.9478957915831661]
Theres可能是一种更有效的方法,有人知道吗?
答案 0 :(得分:7)
考虑到你有一个numpy数组,你可以使用np.split,分割差异所在的位置&gt; C:\ProgramData\Oracle\Java\javapath;
C:\Program Files (x86)\Intel\iCLS Client\;
C:\Program Files\Intel\iCLS Client\;
C:\windows\system32;
C:\windows;
C:\windows\System32\Wbem;
C:\windows\System32\WindowsPowerShell\v1.0\;
C:\Program Files\Intel\Intel(R) Management Engine Components\DAL;
C:\Program Files\Intel\Intel(R) Management Engine Components\IPT;
C:\Program Files (x86)\Intel\Intel(R) Management Engine Components\DAL;
C:\Program Files (x86)\Intel\Intel(R) Management Engine Components\IPT;
C:\Program Files\MiKTeX 2.9\miktex\bin\x64\;
C:\Program Files (x86)\MiKTeX 2.9\miktex\bin\;
C:\Program Files (x86)\Skype\Phone\;
C:\Program Files (x86)\Java\jre7\bin;C:\Program Files\Java\jdk1.6.0\bin;
:
.5
import numpy as np
x = np.array([-8.67735471, -8.63727455, -8.59719439, -5.5511022, -5.51102204, -5.47094188,
-5.43086172, -2.4248497, -2.38476954, -2.34468938, -2.30460922, 0.74148297,
0.78156313, 0.82164329, 3.86773547, 3.90781563, 3.94789579, 3.98797595,
7.03406814, 7.0741483])
print np.split(x, np.where(np.diff(x) > .5)[0] + 1)
[array([-8.67735471, -8.63727455, -8.59719439]), array([-5.5511022 , -5.51102204, -5.47094188, -5.43086172]), array([-2.4248497 , -2.38476954, -2.34468938, -2.30460922]), array([ 0.74148297, 0.78156313, 0.82164329]), array([ 3.86773547, 3.90781563, 3.94789579, 3.98797595]), array([ 7.03406814, 7.0741483 ])]
返回以下元素不符合np.where(np.diff(x) > .5)[0]
条件的索引:
np.diff(x) > .5)
In [6]: np.where(np.diff(x) > .5)[0]
Out[6]: array([ 2, 6, 10, 13, 17])
为每个索引添加1:
+ 1
然后将In [12]: np.where(np.diff(x) > .5)[0] + 1
Out[12]: array([ 3, 7, 11, 14, 18])
传递给np.split将元素拆分为子数组[ 3, 7, 11, 14, 18]
答案 1 :(得分:0)
如果您的最终目的地正在查找每个群集/群组的平均值,其中每个群集的标记差异不会超过某个阈值,您可以使用下面列出的方法。
基本上,我们将输入列表转换为numpy数组,对其进行排序,然后找出连续的差异。根据与某个阈值进行比较时的差异,我们为同一组中的元素创建一个ID相同的ID数组。最后,使用这些ID,我们使用np.bincount
在区间内进行分箱和平均,基本上得到每组的平均值。
这是实施 -
import numpy as np
# Input list
AList = [-8.67735471, -8.63727455, -8.59719439, -5.5511022, -5.51102204,
-5.47094188, -5.43086172, -2.4248497, -2.38476954, -2.34468938,
-2.30460922, 0.74148297, 0.78156313, 0.82164329, 3.86773547,
3.90781563, 3.94789579, 3.98797595, 7.03406814, 7.0741483, 7.11422846]
# Tolerance as thresholding parameter to distinguish between two "groups"
tolerance = 1
# Convert to a numpy array and sort if not already sorted
A = np.sort(np.asarray(AList))
# ID array that has the same IDs for elements of the same group
ID_array = (np.append([False],np.diff(A)>tolerance)).cumsum()
# Finally get the average values for each group
average_values = np.bincount(ID_array,A)/np.bincount(ID_array)
示例运行 -
In [301]: A
Out[301]:
array([-8.67735471, -8.63727455, -8.59719439, -5.5511022 , -5.51102204,
-5.47094188, -5.43086172, -2.4248497 , -2.38476954, -2.34468938,
-2.30460922, 0.74148297, 0.78156313, 0.82164329, 3.86773547,
3.90781563, 3.94789579, 3.98797595, 7.03406814, 7.0741483 ,
7.11422846])
In [302]: average_values
Out[302]:
array([-8.63727455, -5.49098196, -2.36472946, 0.78156313, 3.92785571,
7.0741483 ])