如何使用Dplyr的Summarize和which()来查找最小/最大值

时间:2015-05-12 16:23:01

标签: r dplyr

我有以下数据:

Name <- c("Sam", "Sarah", "Jim", "Fred", "James", "Sally", "Andrew", "John", "Mairin", "Kate", "Sasha", "Ray", "Ed")
Age <- c(22,12,31,35,58,82,17,34,12,24,44,67,43)
Group <- c("A", "B", "B", "B", "B", "C", "C", "D", "D", "D", "D", "D", "D") 
data <- data.frame(Name, Age, Group)

我想使用dplyr

(1)按“组”分组数据 (2)显示每组内的最小和最大年龄 (3)显示具有最小和最大年龄的人的姓名

以下代码执行此操作:

data %>% group_by(Group) %>%
     summarize(minAge = min(Age), minAgeName = Name[which(Age == min(Age))], 
               maxAge = max(Age), maxAgeName = Name[which(Age == max(Age))])

效果很好:

  Group minAge minAgeName maxAge maxAgeName
1     A     22        Sam     22        Sam
2     B     12      Sarah     58      James
3     C     17     Andrew     82      Sally
4     D     12     Mairin     67        Ray

但是,如果有多个最小值或最大值,我会遇到问题:

Name <- c("Sam", "Sarah", "Jim", "Fred", "James", "Sally", "Andrew", "John", "Mairin", "Kate", "Sasha", "Ray", "Ed")
Age <- c(22,31,31,35,58,82,17,34,12,24,44,67,43)
Group <- c("A", "B", "B", "B", "B", "C", "C", "D", "D", "D", "D", "D", "D") 
data <- data.frame(Name, Age, Group)

> data %>% group_by(Group) %>%
+   summarize(minAge = min(Age), minAgeName = Name[which(Age == min(Age))], 
+             maxAge = max(Age), maxAgeName = Name[which(Age == max(Age))])
Error: expecting a single value

我正在寻找两种解决方案:

(1)无论显示哪个最小或最大名称无关紧要,只显示一个(即找到的第一个值) (2)如果存在“联系”,则显示所有最小值和最大值

如果不清楚,请告诉我,并提前致谢!

3 个答案:

答案 0 :(得分:16)

您可以使用which.minwhich.max获取第一个值。

data %>% group_by(Group) %>%
  summarize(minAge = min(Age), minAgeName = Name[which.min(Age)], 
            maxAge = max(Age), maxAgeName = Name[which.max(Age)])

要获取所有值,请使用例如使用适当的collapse参数粘贴。

data %>% group_by(Group) %>%
  summarize(minAge = min(Age), minAgeName = paste(Name[which(Age == min(Age))], collapse = ", "), 
            maxAge = max(Age), maxAgeName = paste(Name[which(Age == max(Age))], collapse = ", "))

答案 1 :(得分:11)

我实际上建议您将数据保存在长期&#34;格式。以下是我如何做到这一点:

library(dplyr)

有关系时保留所有值:

data %>%
  group_by(Group) %>%
  arrange(Age) %>%  ## optional
  filter(Age %in% range(Age))
# Source: local data frame [8 x 3]
# Groups: Group
# 
#     Name Age Group
# 1    Sam  22     A
# 2  Sarah  31     B
# 3    Jim  31     B
# 4  James  58     B
# 5 Andrew  17     C
# 6  Sally  82     C
# 7 Mairin  12     D
# 8    Ray  67     D

有关系时只保留一个值:

data %>%
  group_by(Group) %>%
  arrange(Age) %>%
  slice(if (length(Age) == 1) 1 else c(1, n())) ## maybe overkill?
# Source: local data frame [7 x 3]
# Groups: Group
# 
#     Name Age Group
# 1    Sam  22     A
# 2  Sarah  31     B
# 3  James  58     B
# 4 Andrew  17     C
# 5  Sally  82     C
# 6 Mairin  12     D
# 7    Ray  67     D

如果你真的想要一个宽广的&#34;数据集,基本概念是gatherspread数据,使用&#34; tidyr&#34;:

library(dplyr)
library(tidyr)

data %>%
  group_by(Group) %>%
  arrange(Age) %>%
  slice(c(1, n())) %>%
  mutate(minmax = c("min", "max")) %>%
  gather(var, val, Name:Age) %>%
  unite(key, minmax, var) %>%
  spread(key, val)
# Source: local data frame [4 x 5]
# 
#   Group max_Age max_Name min_Age min_Name
# 1     A      22      Sam      22      Sam
# 2     B      58    James      31    Sarah
# 3     C      82    Sally      17   Andrew
# 4     D      67      Ray      12   Mairin

虽然你想要的关系是什么样的广泛形式尚不清楚。

答案 2 :(得分:3)

以下是一些data.table方法,第一个从@akrun借来的方法:

setDT(data)

# show one, wide format
data[,c(min=.SD[which.min(Age)],max=.SD[which.max(Age)]),by=Group]
   # Group min.Name min.Age max.Name max.Age
# 1:     A      Sam      22      Sam      22
# 2:     B    Sarah      31    James      58
# 3:     C   Andrew      17    Sally      82
# 4:     D   Mairin      12      Ray      67

# show all, long format
data[,{
  mina=min(Age)
  maxa=max(Age)
  rbind(
    data.table(minmax="min",Age=mina,Name=Name[which(Age==mina)]),
    data.table(minmax="max",Age=maxa,Name=Name[which(Age==maxa)])
)},by=Group]
   # Group minmax Age   Name
# 1:     A    min  22    Sam
# 2:     A    max  22    Sam
# 3:     B    min  31  Sarah
# 4:     B    min  31    Jim
# 5:     B    max  58  James
# 6:     C    min  17 Andrew
# 7:     C    max  82  Sally
# 8:     D    min  12 Mairin
# 9:     D    max  67    Ray    

我认为长格式是最好的,因为它允许您使用minmax进行过滤,但代码受到折磨且效率低下。

以下是一些不太好的方法:

# show all, wide format (with a list column)
data[,{
  mina=min(Age)
  maxa=max(Age)
  list(
    minAge=mina,
    maxAge=maxa,
    minNames=list(Name[Age==mina]),
    maxNames=list(Name[Age==maxa]))
},by=Group]
   # Group minAge maxAge  minNames maxNames
# 1:     A     22     22       Sam      Sam
# 2:     B     31     58 Sarah,Jim    James
# 3:     C     17     82    Andrew    Sally
# 4:     D     12     67    Mairin      Ray


# show all, wide format (with a string column)
# (just look at @shadow's answer)