我目前正在尝试用Python实现MLR,并且我不确定如何应用我已经发现的未来值的系数。
<?php
$index="menu-items";
$Topalbums="menu-items";
$Topartists="menu-items";
$Toplists="menu-items";
$Charts="menu-items";
$memuLinkid=basename($_SERVER['PHP_SELF'],".php");
if($menuLinkid=="index"){
$index='active';
}else if ($memuLinkid=="Topalbums"){
$Topalbums='active';
}else if ($memuLinkid=="Topartists"){
$Topartists='active';
}else if ($memuLinkid=="Toplists"){
$Toplists='active';
}else if ($memuLinkid=="Charts"){
$Charts='active';
}
?>
所以,让我们说我想预测&#34;销售&#34;对于以下DataFrame:
import pandas as pd
import statsmodels.formula.api as sm
import statsmodels.api as sm2
TV = [230.1, 44.5, 17.2, 151.5, 180.8]
Radio = [37.8,39.3,45.9,41.3,10.8]
Newspaper = [69.2,45.1,69.3,58.5,58.4]
Sales = [22.1, 10.4, 9.3, 18.5,12.9]
df = pd.DataFrame({'TV': TV,
'Radio': Radio,
'Newspaper': Newspaper,
'Sales': Sales})
Y = df.Sales
X = df[['TV','Radio','Newspaper']]
X = sm2.add_constant(X)
model = sm.OLS(Y, X).fit()
>>> model.params
const -0.141990
TV 0.070544
Radio 0.239617
Newspaper -0.040178
dtype: float64
我一直在尝试一种我在这里找到的方法,但我似乎无法让它发挥作用:Forecasting using Pandas OLS
谢谢!
答案 0 :(得分:6)
假设df2是您的新样本DataFrame:
model = sm.OLS(Y, X).fit()
new_x = df2.loc[df.Sales.notnull(), ['TV', 'Radio', 'Newspaper']].values
new_x = sm2.add_constant(new_x) # sm2 = statsmodels.api
y_predict = model.predict(new_x)
>>> y_predict
array([ 4.61319034, 5.88274588, 6.15220225])
您可以按如下方式将结果直接分配给df2:
df2.loc[:, 'Sales'] = model.predict(new_x)
要使用回归中的预测从原始DataFrame填充缺少的Sales值,请尝试:
X = df.loc[df.Sales.notnull(), ['TV', 'Radio', 'Newspaper']]
X = sm2.add_constant(X)
Y = df[df.Sales.notnull()].Sales
model = sm.OLS(Y, X).fit()
new_x = df.loc[df.Sales.isnull(), ['TV', 'Radio', 'Newspaper']]
new_x = sm2.add_constant(new_x) # sm2 = statsmodels.api
df.loc[df.Sales.isnull(), 'Sales'] = model.predict(new_x)