我有以下用于创建和训练sklearn.ensemble.GradientBoostingClassifier的代码
import sys
然而,当我运行此代码时,我收到错误:
class myMonitor:
def __call__(self, i, estimator, locals):
proba = estimator.predict_proba(Xp2)
myloss = calculateMyLoss(proba, yp2) # calculateMyLoss is defined
# further on
print("Calculated MYLOSS: ",myloss)
return False
... #some more code
model = GradientBoostingClassifier(verbose=2, learning_rate = learningRate, n_estimators=numberOfIterations, max_depth=maxDepth, subsample = theSubsample, min_samples_leaf = minLeafSamples, max_features=maxFeatures)
model.fit(Xp1, yIntegersp1, monitor = myMonitor())
为什么我不能使用相同的估算器(我检查不是 model.fit(Xp1, yIntegersp1, monitor = myMonitor())
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/ensemble/gradient_boosting.py", line 980, in fit
begin_at_stage, monitor)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/ensemble/gradient_boosting.py", line 1058, in _fit_stages
early_stopping = monitor(i, self, locals())
File "OTTOSolverGBM.py", line 44, in __call__
proba = estimator.predict_proba(Xp2)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/ensemble/gradient_boosting.py", line 1376, in predict_proba
score = self.decision_function(X)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/ensemble/gradient_boosting.py", line 1102, in decision_function
score = self._decision_function(X)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/ensemble/gradient_boosting.py", line 1082, in _decision_function
predict_stages(self.estimators_, X, self.learning_rate, score)
File "sklearn/ensemble/_gradient_boosting.pyx", line 115, in sklearn.ensemble._gradient_boosting.predict_stages (sklearn/ensemble/_gradient_boosting.c:2502)
AttributeError: 'NoneType' object has no attribute 'tree_'
)来计算运行期间的类概率?有没有办法实现我想要的(即在拟合程序的每次迭代中检查验证数据的模型)?
答案 0 :(得分:1)
您的estimator
self
。尝试
def __call__(self, i, locals)
proba = self.predict_proba(Xp2)
答案 1 :(得分:0)
您可能会根据类似于this example on forests的partial_fit执行某些操作。如需培训后进行分析,请查看this example on gradient boosting.