继续我之前的post,现在我想按ID分组(仅适用于第3列)并计算列的中位数(Point_B),然后使用列中的每个值减去中值(Point_B) )到其各自的小组。 NA仍应归还。
注意:我希望ID分组仅应用于Point_B列而不应用于Point_A,因为我想计算整个Point_A列的中值并用Point_A中的值减去它。
例如
ID <- c("A","A","A","B","B","B","C","C","C")
Point_A <- c(1,2,NA,1,2,3,1,2,NA)
Point_B <- c(1,2,3,NA,NA,1,1,1,3)
df <- data.frame(ID,Point_A ,Point_B)
+----+---------+---------+
| ID | Point_A | Point_B |
+----+---------+---------+
| A | 1 | 1 |
| A | 2 | 2 |
| A | NA | 3 |
| B | 1 | NA |
| B | 2 | NA |
| B | 3 | 1 |
| C | 1 | 1 |
| C | 2 | 1 |
| C | NA | 3 |
+----+---------+---------+
我之前发布的解决方案计算了中位数而没有按ID分组。这是
library(dplyr)
df %>%
mutate_each(funs(median=.-median(., na.rm=TRUE)), -ID)
期望输出
+----+---------+---------+
| ID | Point_A | Point_B |
+----+---------+---------+
| A | -1 | -1 |
| A | 0 | 0 |
| A | NA | 1 |
| B | -1 | NA |
| B | 0 | NA |
| B | 1 | 0 |
| C | -1 | 0 |
| C | 0 | 0 |
| C | NA | 2 |
+----+---------+---------+
我们如何通过ID分组获取Column3中的值?
答案 0 :(得分:2)
我想要group_by
,我想(关注@ docendodiscimus&#39;建议):
demed <- function(x) x-median(x,na.rm=TRUE)
df %>%
mutate_each(funs(demed),Point_A) %>%
group_by(ID) %>%
mutate_each(funs(demed),Point_B)
给
ID Point_A Point_B
1 A -1 -1
2 A 0 0
3 A NA 1
4 B -1 NA
5 B 0 NA
6 B 1 0
7 C -1 0
8 C 0 0
9 C NA 2
我更喜欢类似的data.table
代码。它的语法需要多次写入变量名,但括号少得多:
require(data.table)
DT <- data.table(df)
DT[,Point_A:=demed(Point_A)
][,Point_B:=demed(Point_B)
,by=ID]