我正在使用YARN-client或YARN-cluster模式运行spark应用程序。
但启动似乎需要很长时间。
初始化spark上下文需要10秒以上。
这是正常的吗?或者它可以优化吗?
环境如下:
以下是应用程序日志的启动部分。 (编辑了一些私人信息)
'Main:在第一行初始化上下文'和'MainProcessor:在最后一行删除以前的输出文件'是应用程序的日志。其他人来自Spark本身。显示此日志后将执行应用程序逻辑。
15/05/07 09:18:31 INFO Main: Initializing context
15/05/07 09:18:31 INFO SparkContext: Running Spark version 1.3.1
15/05/07 09:18:31 INFO SecurityManager: Changing view acls to: myuser,myapp
15/05/07 09:18:31 INFO SecurityManager: Changing modify acls to: myuser,myapp
15/05/07 09:18:31 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(myuser, myapp); users with modify permissions: Set(myuser, myapp)
15/05/07 09:18:31 INFO Slf4jLogger: Slf4jLogger started
15/05/07 09:18:31 INFO Remoting: Starting remoting
15/05/07 09:18:31 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@mymachine:54449]
15/05/07 09:18:31 INFO Utils: Successfully started service 'sparkDriver' on port 54449.
15/05/07 09:18:31 INFO SparkEnv: Registering MapOutputTracker
15/05/07 09:18:32 INFO SparkEnv: Registering BlockManagerMaster
15/05/07 09:18:32 INFO DiskBlockManager: Created local directory at C:\Users\myuser\AppData\Local\Temp\spark-2d3db9d6-ea78-438e-956f-be9c1dcf3a9d\blockmgr-e9ade223-a4b8-4d9f-b038-efd66adf9772
15/05/07 09:18:32 INFO MemoryStore: MemoryStore started with capacity 1956.7 MB
15/05/07 09:18:32 INFO HttpFileServer: HTTP File server directory is C:\Users\myuser\AppData\Local\Temp\spark-ff40d73b-e8ab-433e-88c4-35da27fb6278\httpd-def9220f-ac3a-4dd2-9ac1-2c593b94b2d9
15/05/07 09:18:32 INFO HttpServer: Starting HTTP Server
15/05/07 09:18:32 INFO Server: jetty-8.y.z-SNAPSHOT
15/05/07 09:18:32 INFO AbstractConnector: Started SocketConnector@0.0.0.0:54450
15/05/07 09:18:32 INFO Utils: Successfully started service 'HTTP file server' on port 54450.
15/05/07 09:18:32 INFO SparkEnv: Registering OutputCommitCoordinator
15/05/07 09:18:32 INFO Server: jetty-8.y.z-SNAPSHOT
15/05/07 09:18:32 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
15/05/07 09:18:32 INFO Utils: Successfully started service 'SparkUI' on port 4040.
15/05/07 09:18:32 INFO SparkUI: Started SparkUI at http://mymachine:4040
15/05/07 09:18:32 INFO SparkContext: Added JAR file:/D:/Projects/MyApp/MyApp.jar at http://10.111.111.199:54450/jars/MyApp.jar with timestamp 1430957912240
15/05/07 09:18:32 INFO RMProxy: Connecting to ResourceManager at cluster01/10.111.111.11:8050
15/05/07 09:18:32 INFO Client: Requesting a new application from cluster with 3 NodeManagers
15/05/07 09:18:32 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (23040 MB per container)
15/05/07 09:18:32 INFO Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
15/05/07 09:18:32 INFO Client: Setting up container launch context for our AM
15/05/07 09:18:32 INFO Client: Preparing resources for our AM container
15/05/07 09:18:32 INFO Client: Source and destination file systems are the same. Not copying hdfs://cluster01/apps/spark/spark-assembly-1.3.1-hadoop2.6.0.jar
15/05/07 09:18:32 INFO Client: Setting up the launch environment for our AM container
15/05/07 09:18:33 INFO SecurityManager: Changing view acls to: myuser,myapp
15/05/07 09:18:33 INFO SecurityManager: Changing modify acls to: myuser,myapp
15/05/07 09:18:33 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(myuser, myapp); users with modify permissions: Set(myuser, myapp)
15/05/07 09:18:33 INFO Client: Submitting application 2 to ResourceManager
15/05/07 09:18:33 INFO YarnClientImpl: Submitted application application_1430956687773_0002
15/05/07 09:18:34 INFO Client: Application report for application_1430956687773_0002 (state: ACCEPTED)
15/05/07 09:18:34 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: default
start time: 1430957906540
final status: UNDEFINED
tracking URL: http://cluster01:8088/proxy/application_1430956687773_0002/
user: myapp
15/05/07 09:18:35 INFO Client: Application report for application_1430956687773_0002 (state: ACCEPTED)
15/05/07 09:18:36 INFO Client: Application report for application_1430956687773_0002 (state: ACCEPTED)
15/05/07 09:18:37 INFO Client: Application report for application_1430956687773_0002 (state: ACCEPTED)
15/05/07 09:18:37 INFO YarnClientSchedulerBackend: ApplicationMaster registered as Actor[akka.tcp://sparkYarnAM@cluster02:39698/user/YarnAM#-1579648782]
15/05/07 09:18:37 INFO YarnClientSchedulerBackend: Add WebUI Filter. org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter, Map(PROXY_HOSTS -> cluster01, PROXY_URI_BASES -> http://cluster01:8088/proxy/application_1430956687773_0002), /proxy/application_1430956687773_0002
15/05/07 09:18:37 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter
15/05/07 09:18:38 INFO Client: Application report for application_1430956687773_0002 (state: RUNNING)
15/05/07 09:18:38 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: cluster02
ApplicationMaster RPC port: 0
queue: default
start time: 1430957906540
final status: UNDEFINED
tracking URL: http://cluster01:8088/proxy/application_1430956687773_0002/
user: myapp
15/05/07 09:18:38 INFO YarnClientSchedulerBackend: Application application_1430956687773_0002 has started running.
15/05/07 09:18:38 INFO NettyBlockTransferService: Server created on 54491
15/05/07 09:18:38 INFO BlockManagerMaster: Trying to register BlockManager
15/05/07 09:18:38 INFO BlockManagerMasterActor: Registering block manager mymachine:54491 with 1956.7 MB RAM, BlockManagerId(<driver>, mymachine, 54491)
15/05/07 09:18:38 INFO BlockManagerMaster: Registered BlockManager
15/05/07 09:18:43 INFO YarnClientSchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@cluster02:44996/user/Executor#-786778979] with ID 1
15/05/07 09:18:43 INFO YarnClientSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.8
15/05/07 09:18:43 INFO MainProcessor: Deleting previous output files
感谢。
更新
我认为我找到了(可能是部分的,但主要的)原因。
介于以下几行之间:
15/05/08 11:36:32 INFO BlockManagerMaster: Registered BlockManager
15/05/08 11:36:38 INFO YarnClientSchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@cluster04:55237/user/Executor#-149550753] with ID 1
当我在群集端读取日志时,发现以下行:(确切的时间与上面的行不同,但它是机器之间的差异)
15/05/08 11:36:23 INFO yarn.ApplicationMaster: Started progress reporter thread - sleep time : 5000
15/05/08 11:36:28 INFO impl.AMRMClientImpl: Received new token for : cluster04:45454
似乎Spark故意睡了5秒钟。
我已经阅读了Spark源代码,并且在org.apache.spark.deploy.yarn.ApplicationMaster.scala中,launchReporterThread()获得了该代码。 它循环调用allocator.allocateResources()和Thread.sleep()。 对于sleep,它会读取配置变量spark.yarn.scheduler.heartbeat.interval-ms(默认值为5000,即5秒)。 根据评论,“我们希望在没有对RM提出太多请求的情况下做出合理的响应”。 因此,除非YARN立即满足分配请求,否则似乎将浪费5秒。
当我将配置变量修改为1000时,它只等待1秒。
以下是更改后的日志行:
15/05/08 11:47:21 INFO yarn.ApplicationMaster: Started progress reporter thread - sleep time : 1000
15/05/08 11:47:22 INFO impl.AMRMClientImpl: Received new token for : cluster04:45454
保存4秒。
因此,当一个人不想等待5秒时,可以更改 spark.yarn.scheduler.heartbeat.interval-ms 。
我希望它产生的额外开销可以忽略不计。
更新
相关的JIRA问题已经开启并得到解决。见https://issues.apache.org/jira/browse/SPARK-7533
答案 0 :(得分:2)
这很典型。从运行spark-submit到获取SparkContext,我的系统大约需要20秒。
正如它在几个地方的文档中所述,解决方案是将您的驱动程序转换为RPC服务器。这样你初始化一次,然后其他应用程序可以使用驱动程序的上下文作为服务。
我正在使用我的应用程序执行此操作。我正在使用http4s并将我的驱动程序转换为Web服务器。
答案 1 :(得分:2)
您可以在Spark前面检查Apache Livy这是一个REST API。
你可以在一个Spark / Livy会话中拥有一个session和multiple requests。
答案 2 :(得分:1)
在EMR上测试:
cd /usr/lib/spark/jars/; zip /tmp/yarn-archive.zip *.jar
cd path/to/folder/of/someOtherDependancy/jarFolder/; zip /tmp/yarn-archive.zip jar-file.jar
zip -Tv /tmp/yarn-archive.zip
用于测试完整性和详细调试
如果yarn-archive.zip
已存在于hdfs上,则hdfs dfs -rm -r -f -skipTrash /user/hadoop/yarn-archive.zip
hdfs dfs -put /tmp/yarn-archive.zip /user/hadoop/
其他hdfs dfs -put /tmp/yarn-archive.zip /user/hadoop/
--conf spark.yarn.archive="hdfs:///user/hadoop/yarn-archive.zip"
在spark-submit
之所以可行,是因为主服务器不必将所有的jar分发给从属服务器。他们可以从一些常见的hdfs路径访问它们,这里是hdfs:///user/hadoop/yarn-archive.zip
。
我意识到它可以节省3-5秒的时间,这个时间还取决于集群中的节点数。节点越多,节省的时间就越多。
答案 3 :(得分:0)
如果您正在使用mac os以独立模式运行某些任务,
请记住在remote ssh connection
中启用system preference -> sharing
(我不知道我们应该这样做的原因)
在启用之前,我需要大约1分钟才能运行spark-submit xx.py
启用后,运行它只需3秒钟。
我希望它可以帮助别人在Mac OS平台上遇到那种问题