如何在numpy数组的第一列中具有相等值的行之间求和?例如:
removeIf
非常感谢任何帮助。
答案 0 :(得分:8)
Pandas具有非常强大的groupby功能,这使得这非常简单。
import pandas as pd
n = np.array([[1,2,3],
[1,4,6],
[2,3,5],
[2,6,2],
[3,4,8]])
df = pd.DataFrame(n, columns = ["First Col", "Second Col", "Third Col"])
df.groupby("First Col").sum()
答案 1 :(得分:3)
方法#1
这是基于np.bincount
-
# Initial setup
N = A.shape[1]-1
unqA1, id = np.unique(A[:, 0], return_inverse=True)
# Create subscripts and accumulate with bincount for tagged summations
subs = np.arange(N)*(id.max()+1) + id[:,None]
sums = np.bincount( subs.ravel(), weights=A[:,1:].ravel() )
# Append the unique elements from first column to get final output
out = np.append(unqA1[:,None],sums.reshape(N,-1).T,1)
示例输入,输出 -
In [66]: A
Out[66]:
array([[1, 2, 3],
[1, 4, 6],
[2, 3, 5],
[2, 6, 2],
[7, 2, 1],
[2, 0, 3]])
In [67]: out
Out[67]:
array([[ 1., 6., 9.],
[ 2., 9., 10.],
[ 7., 2., 1.]])
方法#2
的内容# Sort A based on first column
sA = A[np.argsort(A[:,0]),:]
# Row mask of where each group ends
row_mask = np.append(np.diff(sA[:,0],axis=0)!=0,[True])
# Get cummulative summations and then DIFF to get summations for each group
cumsum_grps = sA.cumsum(0)[row_mask,1:]
sum_grps = np.diff(cumsum_grps,axis=0)
# Concatenate the first unique row with its counts
counts = np.concatenate((cumsum_grps[0,:][None],sum_grps),axis=0)
# Concatenate the first column of the input array for final output
out = np.concatenate((sA[row_mask,0][:,None],counts),axis=1)
这是针对问题 -
目前提出的基于numpy的方法的一些运行时测试In [319]: A = np.random.randint(0,1000,(100000,10))
In [320]: %timeit cumsum_diff(A)
100 loops, best of 3: 12.1 ms per loop
In [321]: %timeit bincount(A)
10 loops, best of 3: 21.4 ms per loop
In [322]: %timeit add_at(A)
10 loops, best of 3: 60.4 ms per loop
In [323]: A = np.random.randint(0,1000,(100000,20))
In [324]: %timeit cumsum_diff(A)
10 loops, best of 3: 32.1 ms per loop
In [325]: %timeit bincount(A)
10 loops, best of 3: 32.3 ms per loop
In [326]: %timeit add_at(A)
10 loops, best of 3: 113 ms per loop
似乎Approach #2: cumsum + diff
表现得非常好。
答案 2 :(得分:0)
尝试使用pandas。按第一列分组,然后按行进行求和。像
这样的东西df.groupby(df.ix[:,1]).sum()
答案 3 :(得分:0)