为了获得流体行为的图形表示,通常的做法是绘制流线图。
对于给定的具有速度分量的二维流体,u = K x且v = -K y(其中K是常数,例如:K = 5),流线方程可以是得到的流速场分量积分如下:
流线方程:∫dx/ u =∫dy/ v
求解的方程式如下:A = B + C(其中A是第一个积分的解,B是第二个积分的解,C是积分常数)。
一旦我们实现了这一点,我们就可以通过简单地为C赋值来开始绘制流线图,例如:C = 1,并绘制得到的等式。这会产生一个流线,所以为了获得更多的流线,你需要迭代这最后一步,每次都分配不同的C值。
我已成功绘制了此特定流程的流线,方法是让matlab integrate符号化,并使用ezplot
生成图形,如下所示:
syms x y
K = 5; %Constant.
u = K*x; %Velocity component in x direction.
v = -K*y; %Velocity component in y direction.
A = int(1/u,x); %First integral.
B = int(1/v,y); %Second integral.
for C = -10:0.1:10; %Loop. C is assigned a different value in each iteration.
eqn = A == B + C; %Solved streamline equation.
ezplot(eqn,[-1,1]); %Plot streamline.
hold on;
end
axis equal;
axis([-1 1 -1 1]);
结果如下:
问题在于,流ezplot
的某些特定区域不够准确,并且不能很好地处理奇点(渐近线等)。这就是标准"数字" plot
似乎是可取的,以获得更好的视觉输出。
这里的挑战是将符号流线解决方案转换为与标准plot
函数兼容的显式表达式。
我尝试这样做,使用subs
和solve
但没有成功(Matlab抛出错误)。
syms x y
K = 5; %Constant.
u = K*x; %Velocity component in x direction.
v = -K*y; %Velocity component in y direction.
A = int(1/u,x); %First integral.
B = int(1/v,y); %Second integral.
X = -1:0.1:1; %Array of x values for plotting.
for C = -10:0.1:10; %Loop. C is assigned a different value in each iteration.
eqn = A == B + C; %Solved streamline equation.
Y = subs(solve(eqn,y),x,X); %Explicit streamline expression for Y.
plot(X,Y); %Standard plot call.
hold on;
end
这是命令窗口中显示的错误:
Error using mupadmex
Error in MuPAD command: Division by zero.
[_power]
Evaluating: symobj::trysubs
Error in sym/subs>mupadsubs (line 139)
G =
mupadmex('symobj::fullsubs',F.s,X2,Y2);
Error in sym/subs (line 124)
G = mupadsubs(F,X,Y);
Error in Flow_Streamlines (line 18)
Y = subs(solve(eqn,y),x,X); %Explicit
streamline expression for Y.
那么,应该怎么做呢?
答案 0 :(得分:0)
由于您多次使用subs
,matlabFunction
效率更高。您可以使用C
作为参数,并根据y
和x
求解C
。然后for
循环非常快:
syms x y
K = 5; %Constant.
u = K*x; %Velocity component in x direction.
v = -K*y; %Velocity component in y direction.
A = int(1/u,x); %First integral.
B = int(1/v,y); %Second integral.
X = -1:0.1:1; %Array of x values for plotting.
syms C % C is treated as a parameter
eqn = A == B + C; %Solved streamline equation.
% Now solve the eqn for y, and make it into a function of `x` and `C`
Y=matlabFunction(solve(eqn,y),'vars',{'x','C'})
for C = -10:0.1:10; %Loop. C is assigned a different value in each iteration.
plot(X,Y(X,C)); %Standard plot call, but using the function for `Y`
hold on;
end