我首先使用lm
然后使用dynlm
(来自包dynlm
)运行回归。以下是我使用lm
所做的事情:
Euribor3t <- ts(diff(Euribor3))
OIS3t <- ts(diff(Ois3))
x <- ts(diff(Eurepo3-Ois3))
Vstoxxt <- ts(diff(Vstoxx))
CDSt <- ts(diff(CDS))
omo2 <- ts(diff(log(Open.Market.Operations)))
l1 <- (lag(Euribor3t, k=-1))
axx <- ts.intersect(Euribor3t, OIS3t, x, Vstoxxt, CDSt, omo2, l1)
reg1 <- lm(Euribor3t~OIS3t+CDSt+x+Vstoxxt+omo2+l1, data=axx)
summary(reg1)
和dynlm
:
zooX = zoo(test[, -1])
lmx <- dynlm(d(Euribor3)~d(Ois3)+d(CDS)+d(Eurepo3-Ois3)+d(Vstoxx)+d(log(Open.Market.Operations))+d(L(Euribor3, 1)), data=zooX)
summary(lmx)
这两种方法给出了完全相同的输出。但是,如果我将一个子集添加到1到24的所有回归中(其他条件相同):
Euribor3t <- ts(diff(Euribor3))
OIS3t <- ts(diff(Ois3))
x <- ts(diff(Eurepo3-Ois3))
Vstoxxt <- ts(diff(Vstoxx))
CDSt <- ts(diff(CDS))
omo2 <- ts(diff(log(Open.Market.Operations)))
l1 <- (lag(Euribor3t, k=-1))
axx <- ts.intersect(Euribor3t, OIS3t, x, Vstoxxt, CDSt, omo2, l1)
reg1 <- lm(Euribor3t~OIS3t+CDSt+x+Vstoxxt+omo2+l1, data=axx, subset=1:24)
summary(reg1)
zooX = zoo(test[, -1])
lmx <- dynlm(d(Euribor3)~d(Ois3)+d(CDS)+d(Eurepo3-Ois3)+d(Vstoxx)+d(log(Open.Market.Operations))+d(L(Euribor3, 1)), data=zooX[1:24])
summary(lmx)
两个输出彼此不同。导致回归输出偏差的问题可能是什么?
以下是我试验过的数据样本:
Date Euribor3 Ois3 Eurepo3 Vstoxx CDS Open.Market.Operations
1 03.01.2005 2.154 2.089 2.09 14.47 17.938 344999
2 04.01.2005 2.151 2.084 2.09 14.51 17.886 344999
3 05.01.2005 2.151 2.087 2.08 14.42 17.950 333998
4 06.01.2005 2.150 2.085 2.08 13.80 17.950 333998
5 07.01.2005 2.146 2.086 2.08 13.57 17.913 333998
6 10.01.2005 2.146 2.087 2.08 12.92 17.958 333998
7 11.01.2005 2.146 2.089 2.08 13.68 17.962 333998
8 12.01.2005 2.145 2.085 2.08 14.05 17.886 339999
9 13.01.2005 2.144 2.084 2.08 13.64 17.568 339999
10 14.01.2005 2.144 2.085 2.08 13.57 17.471 339999
11 17.01.2005 2.143 2.085 2.08 13.20 17.365 339999
12 18.01.2005 2.144 2.085 2.08 13.17 17.214 347999
13 19.01.2005 2.143 2.086 2.08 13.63 17.143 354499
14 20.01.2005 2.144 2.087 2.08 14.17 17.125 354499
15 21.01.2005 2.143 2.087 2.08 13.96 17.193 354499
16 24.01.2005 2.143 2.086 2.08 14.11 17.283 354499
17 25.01.2005 2.144 2.086 2.08 13.63 17.083 354499
18 26.01.2005 2.143 2.086 2.08 13.32 17.348 347999
19 27.01.2005 2.144 2.085 2.08 12.46 17.295 352998
20 28.01.2005 2.144 2.084 2.08 12.81 17.219 352998
21 31.01.2005 2.142 2.084 2.08 12.72 17.143 352998
22 01.02.2005 2.142 2.083 2.08 12.36 17.125 352998
23 02.02.2005 2.141 2.083 2.08 12.25 17.000 357499
24 03.02.2005 2.144 2.088 2.08 12.38 16.808 357499
25 04.02.2005 2.142 2.084 2.08 11.60 16.817 357499
26 07.02.2005 2.142 2.084 2.08 11.99 16.798 359999
27 08.02.2005 2.141 2.083 2.08 11.92 16.804 355500
28 09.02.2005 2.142 2.080 2.08 12.19 16.589 355500
29 10.02.2005 2.140 2.080 2.08 12.04 16.500 355500
30 11.02.2005 2.140 2.078 2.08 11.99 16.429 355500
31 14.02.2005 2.139 2.078 2.08 12.52 16.042 355500
答案 0 :(得分:2)
您不允许dynlm
使用与lm
中相同数量的数据。后一种模型包含两个较少的观察结果。
dim(model.frame(reg1))
# [1] 24 7
dim(model.frame(lmx))
# [1] 22 7
原因是lm
使用整个数据集(31个观察值)转换变量(差异),而dynlm
只传递24个观察值,因此dynlm
1}}将用24个观察值进行差分。由于差分后丢失的观察结果,在两种情况下得到的行数都不相同。
在dylm
中,您应该使用data=zooX[1:26]
。以这种方式使用相同的子集并获得相同的结果:
reg1 <- lm(Euribor3t~OIS3t+CDSt+x+Vstoxxt+omo2+l1, data=axx, subset=1:24)
lmx <- dynlm(d(Euribor3)~d(Ois3)+d(CDS)+d(Eurepo3-Ois3)+d(Vstoxx)+
d(log(Open.Market.Operations))+d(L(Euribor3, 1)), data=zooX[1:26])
all.equal(as.vector(fitted(reg1)), as.vector(fitted(lmx)))
# [1] TRUE
all.equal(coef(reg1), coef(lmx), check.attributes=FALSE)
# [1] TRUE