给定一个2D数组,我想创建一个3D数组,其中沿着第三维的值(即stacked[row, col, :]
)是[row, col]
处原始数组的平坦邻居。我想概括这个过程来处理任意(但合理)的搜索半径。
这question似乎很有希望,但我不确定如果没有(几个)for
循环,我真的可以使用它的方法。为了简洁起见,我目前使用搜索半径为1的方法用下面的例子说明。
此question + answer也很接近,但我特意寻找纯粹使用智能索引来避免循环的解决方案。
import numpy as np
np.random.seed(0)
x = np.random.random_integers(0, 10, size=(4, 5))
print(x) # * highlights the neighbors we'll see later
[[ 5 0 3 3 7]
[ 9 *3 *5 *2 4]
[ 7 *6 *8 *8 10]
[ 1 *6 *7 *7 8]]
# padding the edges
padded = np.pad(x, mode='edge', pad_width=1) # pad_width -> search radius
print(padded)
[[ 5 5 0 3 3 7 7]
[ 5 5 0 3 3 7 7]
[ 9 9 3 5 2 4 4]
[ 7 7 6 8 8 10 10]
[ 1 1 6 7 7 8 8]
[ 1 1 6 7 7 8 8]]
那么我们可以堆叠所有邻居。 这是我想要概括的操作
blocked = np.dstack([
padded[0:-2, 0:-2], # upper left
padded[0:-2, 1:-1], # upper center
padded[0:-2, 2:], # upper right
padded[1:-1, 0:-2], # middle left...
padded[1:-1, 1:-1],
padded[1:-1, 2:],
padded[2:, 0:-2], # lower left ...
padded[2:, 1:-1],
padded[2:, 2:],
])
如果单元格看起来像这样(访问reshape
仅用于说明目的),则访问邻居
print(blocked[2, 2, :].reshape(3, 3))
[[3 5 2]
[6 8 8]
[6 7 7]]
对于给定的搜索范围,是否有一种有效的方法可以将调用推广到np.dstack
?
答案 0 :(得分:2)
这可能是一种方法 -
import numpy as np
# Parameters
R = 3 # Radius
M1,N1 = padded.shape
rowlen = N1 - R + 1
collen = M1 - R + 1
# Linear indices for the starting R x R block
idx1 = np.arange(R)[:,None]*N1 + np.arange(R)
# Offset (from the starting block indices) linear indices for all the blocks
idx2 = np.arange(collen)[:,None]*N1 + np.arange(rowlen)
# Finally, get the linear indices for all blocks
all_idx = idx1.ravel()[None,None,:] + idx2[:,:,None]
# Index into padded for the final output
out = padded.ravel()[all_idx]
这是一个针对半径的示例运行R = 4
-
In [259]: padded
Out[259]:
array([[ 5, 5, 0, 3, 3, 3],
[ 5, 5, 0, 3, 3, 3],
[ 7, 7, 9, 3, 5, 5],
[ 2, 2, 4, 7, 6, 6],
[ 8, 8, 8, 10, 1, 1],
[ 6, 6, 7, 7, 8, 8],
[ 6, 6, 7, 7, 8, 8]])
In [260]: out
Out[260]:
array([[[ 5, 5, 0, 3, 5, 5, 0, 3, 7, 7, 9, 3, 2, 2, 4, 7],
[ 5, 0, 3, 3, 5, 0, 3, 3, 7, 9, 3, 5, 2, 4, 7, 6],
[ 0, 3, 3, 3, 0, 3, 3, 3, 9, 3, 5, 5, 4, 7, 6, 6]],
[[ 5, 5, 0, 3, 7, 7, 9, 3, 2, 2, 4, 7, 8, 8, 8, 10],
[ 5, 0, 3, 3, 7, 9, 3, 5, 2, 4, 7, 6, 8, 8, 10, 1],
[ 0, 3, 3, 3, 9, 3, 5, 5, 4, 7, 6, 6, 8, 10, 1, 1]],
[[ 7, 7, 9, 3, 2, 2, 4, 7, 8, 8, 8, 10, 6, 6, 7, 7],
[ 7, 9, 3, 5, 2, 4, 7, 6, 8, 8, 10, 1, 6, 7, 7, 8],
[ 9, 3, 5, 5, 4, 7, 6, 6, 8, 10, 1, 1, 7, 7, 8, 8]],
[[ 2, 2, 4, 7, 8, 8, 8, 10, 6, 6, 7, 7, 6, 6, 7, 7],
[ 2, 4, 7, 6, 8, 8, 10, 1, 6, 7, 7, 8, 6, 7, 7, 8],
[ 4, 7, 6, 6, 8, 10, 1, 1, 7, 7, 8, 8, 7, 7, 8, 8]]])