我正在尝试使用这个芯片:
https://www.adafruit.com/products/1655? ... fgodFpsAow + 一个Attiny85
我正在使用的代码如下,它可以与Arduino配合使用,但不适用于Attiny85(只需打开并保持2种颜色绿色和黄色)。有任何想法吗?谢谢!
我的ATtiny设置为8 Mhz,neopixel.h库中有800Khz的数据流。
代码如下。
#include <Adafruit_NeoPixel.h>
/*
WS2811/Neopixel pattern switcher for ATtiny85 (and Arduino)
Requires Adafruit NeoPixel Library
WS2811 Signal, Digital Pin 4
Button, Digital Pin 0
GPL v3
*/
/*
shin:random pattern selector
*/
// Define
#define NUM_LEDS 1 //60LED per strip
#define DATA_PIN 0 //output pin on ATTiny85
#define BTN_PIN 1 //input pin on ATTiny85
#define BTN_DELAY 250 //add delay for debounce
#define NUM_PATTERNS 12 //patterns avail
#define CTR_THRESH 16
// Init Vars
uint8_t j = 0;
uint8_t pattern=1;
uint8_t buttonState=0;
uint8_t lastPix=0;
uint8_t myPix=0;
uint8_t direction=1;
uint8_t counter=0;
uint8_t colors[3];
uint32_t setColor=0;
unsigned long mark;
// Start Strip
Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUM_LEDS, DATA_PIN, NEO_GRB + NEO_KHZ800);
void setup() {
//pinMode(BTN_PIN, INPUT);
randomSeed(BTN_PIN);
strip.begin();
strip.show(); // Initialize all pixels to 'off'
}
void loop() {
// if button pressed, advance, set mark
//chkBtn(digitalRead(BTN_PIN));
int rand = random(1,13);//1to12
// if pattern greater than #pattern reset
//if (pattern > NUM_PATTERNS) { pattern = 1; }
if (rand > NUM_PATTERNS) { pattern = 1; }
// choose a pattern
//pickPattern(pattern);
pickPattern(rand);
// set direction
if (direction == 1) { j++; } else { j--; }
if (j > 254) { direction = 0; }
if (j < 1) { direction = 1; }
}
/* pick a pattern */
void pickPattern(uint8_t var) {
switch (var) {
case 1:
// scanner, color and delay - RGB
scanner(strip.Color(255,0,0),50);
scanner(strip.Color(200,0,100),50);
scanner(strip.Color(64,0,200),50);
break;
case 2:
// color wipe random RGB
colorWipe(strip.Color(random(255), random(255), random(255)),50);
break;
case 3:
// color wave - Hue/Sat/Bright
// hue low (0-359), high (0-359),rate,extra delay
wavey(200,240,0.06,0);
break;
case 4:
// rainbow firefly, 1px at random
colorFirefly(60);
counter++;
break;
case 5:
// rainbow solid
rainbow(10);
counter++;
break;
case 6:
// bounce in and out
// tail len, counter, delay
bounceInOut(4,counter,20);
counter++;
break;
case 7:
// color wipe from center
colorWipeCenter(strip.Color(255,0,0),100);
colorWipeCenter(strip.Color(255,64,0),100);
break;
case 8:
// solid color
colorFast(strip.Color(255,0,0),0);
break;
case 9:
// fade even or odd
// 0-359 Hue value, even/odd, delay
fadeEveOdd(200,0,20);
fadeEveOdd(300,1,20);
break;
case 10:
// show rainbow
rainbowCycle(10);
break;
case 11:
// show rainbow
theaterChaseRainbow(50);
break;
case 12:
rainbowCycle2(20);
break;
}
}
/* check button state */
boolean chkBtn(int buttonState) {
if (buttonState == HIGH && (millis() - mark) > BTN_DELAY) {
j = 0;
mark = millis();
pattern++;
return true;
}
else { return false; }
}
void colorFirefly(int wait) {
if(myPix != lastPix) {
if(counter<CTR_THRESH) {
float colorV = sin((6.28/30)*(float)(counter)) *255;
HSVtoRGB((359/CTR_THRESH)*counter, 255, colorV, colors);
strip.setPixelColor(myPix, colors[0], colors[1], colors[2]);
strip.show();
delay(wait);
} else {
lastPix=myPix;
counter=0;
colorFast(0,0);
}
} else {
myPix=random(0,strip.numPixels());
}
}
// Fill the dots one after the other with a color
// Modified from Neopixel sketch to break on button press
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {
if(chkBtn(digitalRead(BTN_PIN))) { break; }
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
}
// color wipe from center
void colorWipeCenter(uint32_t c, uint8_t wait) {
uint8_t mid=strip.numPixels()/2;
strip.setPixelColor(mid,c);
for(uint16_t i=0; i<=strip.numPixels()/2; i++) {
if(chkBtn(digitalRead(BTN_PIN))) { break; }
strip.setPixelColor(mid+i, c);
strip.setPixelColor(mid-i, c);
strip.show();
delay(wait);
}
}
// fast version
void colorFast(uint32_t c, uint8_t wait) {
for (uint16_t i = 0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, c);
}
strip.show();
delay(wait);
}
// Rainbow Cycle, modified from Neopixel sketch to break on button press
void rainbowCycle(uint8_t wait) {
uint16_t i;
// for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for (i = 0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);
// }
}
void rainbow(uint8_t wait) {
uint16_t i;
//for(j=0; j<256; j++) {
for (i = 0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i + j) & 255));
}
strip.show();
delay(wait);
// }
}
// scanner
void scanner(uint32_t c,uint8_t wait) {
for(int i=0; i< strip.numPixels(); i++) {
if(chkBtn(digitalRead(BTN_PIN))) { break; }
colorFast(0,0);
strip.setPixelColor(i,c);
strip.show();
delay(wait);
}
for(int i=strip.numPixels(); i>0; i--) {
if(chkBtn(digitalRead(BTN_PIN))) { break; }
colorFast(0,0);
strip.setPixelColor(i,c);
strip.show();
delay(wait);
}
}
// scanner to midpoint
void bounceInOut(uint8_t num, uint8_t start,uint8_t wait) {
colorFast(0,0);
uint8_t color=200;
for(int q=0; q < num; q++) {
if(strip.numPixels()-start >= 0 && start < NUM_LEDS) {
strip.setPixelColor(start+q, strip.Color(0,color,0));
strip.setPixelColor(strip.numPixels()-start-q, strip.Color(0,color,0));
}
color=round(color/2.0);
strip.show();
delay(wait);
}
if(counter > strip.numPixels()) { counter=0; }
}
void fadeEveOdd(int c1,byte rem,uint8_t wait) {
for(int j=0; j < CTR_THRESH; j++) {
for(int i=0; i< strip.numPixels(); i++) {
if(i % 2== rem) {
HSVtoRGB(c1,255,(255/CTR_THRESH)*j,colors);
strip.setPixelColor(i,colors[0],colors[1],colors[2]);
}
}
if(chkBtn(digitalRead(BTN_PIN))) { break; }
strip.show();
delay(wait);
}
for(int j=CTR_THRESH; j >= 0; j--) {
for(int i=0; i< strip.numPixels(); i++) {
if(i % 2== rem) {
HSVtoRGB(c1,255,(255/CTR_THRESH)*j,colors);
strip.setPixelColor(i,colors[0],colors[1],colors[2]);
}
}
if(chkBtn(digitalRead(BTN_PIN))) { break; }
strip.show();
delay(wait);
}
}
// twinkle random number of pixels
void twinkleRand(int num,uint32_t c,uint32_t bg,int wait) {
// set background
colorFast(bg,0);
// for each num
for (int i=0; i<num; i++) {
strip.setPixelColor(random(strip.numPixels()),c);
}
strip.show();
delay(wait);
}
// sine wave, low (0-359),high (0-359), rate of change, wait
void wavey(int low,int high,float rt,uint8_t wait) {
float in,out;
int diff=high-low;
int step = diff/strip.numPixels();
for (in = 0; in < 6.283; in = in + rt) {
for(int i=0; i< strip.numPixels(); i++) {
out=sin(in+i*(6.283/strip.numPixels())) * diff + low;
HSVtoRGB(out,255,255,colors);
strip.setPixelColor(i,colors[0],colors[1],colors[2]);
}
strip.show();
delay(wait);
if(chkBtn(digitalRead(BTN_PIN))) { break; }
}
}
// sine wave, intensity
void waveIntensity(float rt,uint8_t wait) {
float in,level;
for (in = 0; in < 6.283; in = in + rt) {
for(int i=0; i< strip.numPixels(); i++) {
// sine wave, 3 offset waves make a rainbow!
level = sin(i+in) * 127 + 128;
// set color level
strip.setPixelColor(i,(int)level,0,0);
}
strip.show();
delay(wait);
if(chkBtn(digitalRead(BTN_PIN))) { break; }
}
}
// helpers
uint32_t Wheel(byte WheelPos) {
if (WheelPos < 85) {
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if (WheelPos < 170) {
WheelPos -= 85;
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
}
// HSV to RGB colors
// hue: 0-359, sat: 0-255, val (lightness): 0-255
// adapted from http://funkboxing.com/wordpress/?p=1366
void HSVtoRGB(int hue, int sat, int val, uint8_t * colors) {
int r, g, b, base;
if (sat == 0) { // Achromatic color (gray).
colors[0] = val;
colors[1] = val;
colors[2] = val;
} else {
base = ((255 - sat) * val) >> 8;
switch (hue / 60) {
case 0:
colors[0] = val;
colors[1] = (((val - base) * hue) / 60) + base;
colors[2] = base;
break;
case 1:
colors[0] = (((val - base) * (60 - (hue % 60))) / 60) + base;
colors[1] = val;
colors[2] = base;
break;
case 2:
colors[0] = base;
colors[1] = val;
colors[2] = (((val - base) * (hue % 60)) / 60) + base;
break;
case 3:
colors[0] = base;
colors[1] = (((val - base) * (60 - (hue % 60))) / 60) + base;
colors[2] = val;
break;
case 4:
colors[0] = (((val - base) * (hue % 60)) / 60) + base;
colors[1] = base;
colors[2] = val;
break;
case 5:
colors[0] = val;
colors[1] = base;
colors[2] = (((val - base) * (60 - (hue % 60))) / 60) + base;
break;
}
}
}
//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel( (i+j) % 255)); //turn every third pixel on
}
strip.show();
delay(wait);
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}
// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle2(uint8_t wait) {
uint16_t i, j;
for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);
}
}
答案 0 :(得分:2)
另一种解决方案是包括:
ifdef AVR
include <avr/power.h>
endif
并更改设置:
#if defined (__AVR_ATtiny45__)
if (F_CPU == 8000000) clock_prescale_set(clock_div_1);
#endif
以下代码:
// This is a demonstration on how to use an input device to trigger changes on your neo pixels.
// You should wire a momentary push button to connect from ground to a digital IO pin. When you
// press the button it will change to a new pixel animation. Note that you need to press the
// button once to start the first animation!
#include <Adafruit_NeoPixel.h>
#ifdef __AVR__
#include <avr/power.h>
#endif
#define BUTTON_PIN 0 // Digital IO pin connected to the button. This will be
// driven with a pull-up resistor so the switch should
// pull the pin to ground momentarily. On a high -> low
// transition the button press logic will execute.
#define PIXEL_PIN 4 // Digital IO pin connected to the NeoPixels.
#define PIXEL_COUNT 8
// Parameter 1 = number of pixels in strip, neopixel stick has 8
// Parameter 2 = pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_RGB Pixels are wired for RGB bitstream
// NEO_GRB Pixels are wired for GRB bitstream, correct for neopixel stick
// NEO_KHZ400 400 KHz bitstream (e.g. FLORA pixels)
// NEO_KHZ800 800 KHz bitstream (e.g. High Density LED strip), correct for neopixel stick
Adafruit_NeoPixel strip = Adafruit_NeoPixel(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800);
bool oldState = HIGH;
int showType = 0;
void setup() {
// This is for Trinket 5V 16MHz, you can remove these three lines if you are not using a Trinket
#if defined (__AVR_ATtiny45__)
if (F_CPU == 8000000) clock_prescale_set(clock_div_1);
#endif
// End of trinket special code
pinMode(BUTTON_PIN, INPUT_PULLUP);
strip.begin();
strip.show(); // Initialize all pixels to 'off'
}
void loop() {
// Get current button state.
bool newState = digitalRead(BUTTON_PIN);
// Check if state changed from high to low (button press).
if (newState == LOW && oldState == HIGH) {
// Short delay to debounce button.
delay(20);
// Check if button is still low after debounce.
newState = digitalRead(BUTTON_PIN);
if (newState == LOW) {
showType++;
if (showType > 9)
showType=0;
startShow(showType);
}
}
// Set the last button state to the old state.
oldState = newState;
}
void startShow(int i) {
switch(i){
case 0: colorWipe(strip.Color(0, 0, 0), 50); // Black/off
break;
case 1: colorWipe(strip.Color(255, 0, 0), 50); // Red
break;
case 2: colorWipe(strip.Color(0, 255, 0), 50); // Green
break;
case 3: colorWipe(strip.Color(0, 0, 255), 50); // Blue
break;
case 4: theaterChase(strip.Color(127, 127, 127), 50); // White
break;
case 5: theaterChase(strip.Color(127, 0, 0), 50); // Red
break;
case 6: theaterChase(strip.Color( 0, 0, 127), 50); // Blue
break;
case 7: rainbow(20);
break;
case 8: rainbowCycle(20);
break;
case 9: theaterChaseRainbow(50);
break;
}
}
// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
}
void rainbow(uint8_t wait) {
uint16_t i, j;
for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));
}
strip.show();
delay(wait);
}
}
// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;
for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);
}
}
//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8_t wait) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q < 3; q++) {
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, c); //turn every third pixel on
}
strip.show();
delay(wait);
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}
//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8_t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel( (i+j) % 255)); //turn every third pixel on
}
strip.show();
delay(wait);
for (int i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}
// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if(WheelPos < 85) {
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
WheelPos -= 170;
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
答案 1 :(得分:0)
对这些电路板进行故障排除非常具有挑战性我最初的想法是你可能在ATtiny上的内存不足。您是否尝试过仅使用一个动画函数进行测试的最少量代码?
此外,在电气工程堆栈交易所看来,这个话题还有很多活动:
https://electronics.stackexchange.com/questions/24269/checking-memory-footprint-in-arduino
https://electronics.stackexchange.com/questions/74872/memory-management-problems-with-attiny85