我想在每个方面添加两个回归线方程和R2。我采用Jayden's function来解决问题,但我发现每个方程都是一样的。可能的原因是向函数发送了错误的数据子集。任何建议将不胜感激!
我的代码:
p <- ggplot(data=df,aes(x=x))+
geom_point(aes(y = y1),size=2.0)+
geom_smooth(aes(y = y1),method=lm,se=FALSE,size=0.5,
fullrange = TRUE)+ # Add regression line;
annotate("text",x = 150,y =320, label = lm_eqn(lm(y1~x,df)), # maybe wrong
size = 2.0, parse = TRUE)+ # Add regression line equation;
geom_point(aes(y = y2),size=2.0)+
geom_smooth(aes(y = y2),method=lm,se=FALSE,size=0.5,
fullrange = TRUE)+ # Add regression line;
annotate("text",x = 225,y =50, label = lm_eqn(lm(y2~x,df)),
size = 2.0, parse = TRUE)+ # Add regression line equation;
facet_wrap(~trt)
我的数据框:
x y1 y2 trt
22.48349 34.2 31.0 6030
93.52976 98.5 96.0 6030
163.00984 164.2 169.8 6030
205.62072 216.7 210.0 6030
265.46812 271.8 258.5 6030
23.79859 35.8 24.2 6060
99.97307 119.4 90.6 6060
189.91814 200.8 189.3 6060
268.10060 279.5 264.6 6060
325.65609 325.7 325.4 6060
357.59726 353.6 353.8 6060
我的情节:
PS。每个方面有两条线和你的方程,两条线是正确的,但这两个方程是错误的。显然,右侧和左侧小平面的上/下方程应该彼此不同。
答案 0 :(得分:3)
1)ggplot2 首先尝试将df
转换为长格式(请参阅##行)。我们创建了一个注释数据框ann
,用于定义文本及其与geom_text
一起使用的位置。请注意,由于地图由trt
分面,geom_text
将使用trt
每行中的ann
列将该行与相应的构面相关联。
library(ggplot2)
library(reshape2)
long <- melt(df, measure.vars = 2:3) ##
trts <- unique(long$trt)
ann <- data.frame(x = c(0, 100),
y = c(250, 100),
label = c(lm_eqn(lm(y1 ~ x, df, subset = trt == trts[1])),
lm_eqn(lm(y2 ~ x, df, subset = trt == trts[1])),
lm_eqn(lm(y1 ~ x, df, subset = trt == trts[2])),
lm_eqn(lm(y2 ~ x, df, subset = trt == trts[2]))),
trt = rep(trts, each = 2),
variable = c("y1", "y2"))
ggplot(long, aes(x, value)) +
geom_point() +
geom_smooth(aes(col = variable), method = "lm", se = FALSE,
full_range = TRUE) +
geom_text(aes(x, y, label = label, col = variable), data = ann,
parse = TRUE, hjust = -0.1, size = 2) +
facet_wrap(~ trt)
ann
可以等效地定义如下:
f <- function(v) lm_eqn(lm(value ~ x, long, subset = variable==v[[1]] & trt==v[[2]]))
Grid <- expand.grid(variable = c("y1", "y2"), trt = trts)
ann <- data.frame(x = c(0, 100), y = c(250, 100), label = apply(Grid, 1, f), Grid)
(图片后继续)
2)格子在这种情况下格子可能更容易:
library(lattice)
xyplot(y1 + y2 ~ x | factor(trt), df,
key = simpleKey(text = c("y1", "y2"), col = c("blue", "red")),
panel = panel.superpose,
panel.groups = function(x, y, group.value, ...) {
if (group.value == "y1") {
X <- 150; Y <- 300; col <- "blue"
} else {
X <- 250; Y <- 100; col <- "red"
}
panel.points(x, y, col = col)
panel.abline(lm(y ~ x), col = col)
panel.text(X, Y, parse(text = lm_eqn(lm(y ~ x))), col = col, cex = 0.7)
}
)
(图片后继续)
3)latticeExtra 或者我们可以使格子图更像ggplot2:
library(latticeExtra)
xyplot(y1 + y2 ~ x | factor(trt), df, par.settings = ggplot2like(),
key = simpleKey(text = c("y1", "y2"), col = c("blue", "red")),
panel = panel.superpose,
panel.groups = function(x, y, group.value, ...) {
if (group.value == "y1") {
X <- 150; Y <- 300; col <- "blue"
} else {
X <- 250; Y <- 100; col <- "red"
}
panel.points(x, y, col = col)
panel.grid()
panel.abline(lm(y ~ x), col = col)
panel.text(X, Y, parse(text = lm_eqn(lm(y ~ x))), col = col, cex = 0.7)
}
)
(图片后继续)
注意:我们将其用作df
:
df <-
structure(list(x = c(22.48349, 93.52976, 163.00984, 205.62072,
265.46812, 23.79859, 99.97307, 189.91814, 268.1006, 325.65609,
357.59726), y1 = c(34.2, 98.5, 164.2, 216.7, 271.8, 35.8, 119.4,
200.8, 279.5, 325.7, 353.6), y2 = c(31, 96, 169.8, 210, 258.5,
24.2, 90.6, 189.3, 264.6, 325.4, 353.8), trt = c(6030L, 6030L,
6030L, 6030L, 6030L, 6060L, 6060L, 6060L, 6060L, 6060L, 6060L
)), .Names = c("x", "y1", "y2", "trt"), class = "data.frame", row.names = c(NA,
-11L))
更新
ann
。