这是我数据的样本
如果第一列是索引0,我想使用MapReduce从此文件获取每个商店的总销售额,商店名称位于索引2且收入位于索引4
这是我的Mapper代码
public void map(LongWritable key , Text value , Context context)
throws IOException , InterruptedException
{
String line = value.toString();
String[] columns = line.split("\t");
if(columns.length == 6)
{
String storeNameString = columns[2];
Text storeName = new Text(storeNameString);
String storeRevenueString = columns[4];
IntWritable storeRevenue = new IntWritable(Integer.parseInt(storeRevenueString));
context.write(storeName, storeRevenue);
}
}
这是我的减速机代码
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException , InterruptedException {
Text storeName = key;
int storeSales = 0;
while(values.iterator().hasNext())
{
storeSales += values.iterator().next().get();
}
context.write(storeName, new IntWritable(storeSales));
}
这是运行作业的代码
public class StoreSales extends Configured implements Tool {
public static void main(String[] args) throws Exception {
// this main function will call run method defined above.
int res = ToolRunner.run(new StoreSales(),args);
System.exit(res);
}
@Override
public int run(String[] args) throws Exception {
// TODO Auto-generated method stub
JobConf conf = new JobConf();
@SuppressWarnings("unused")
Job job = new Job(conf , "Sales Per Store");
job.setMapperClass(StoreSalesMapper.class);
job.setReducerClass(StoreSalesReducer.class);
job.setJarByClass(StoreSales.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path input = new Path(args[0]);
Path output = new Path(args[1]);
FileInputFormat.addInputPath(conf , input);
FileOutputFormat.setOutputPath(conf, output);
JobClient.runJob(conf);
return 0;
}
}
这是结果应该如何的样本
这是我得到的结果
我做错了什么?
答案 0 :(得分:1)
您的逻辑没有任何问题,我使用新的map reduce api在驱动程序中使用了您的逻辑和修改位:
映射器部分
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class Map extends Mapper<LongWritable,Text,Text,IntWritable>{
public void map(LongWritable key , Text value , Context context)
throws IOException , InterruptedException
{
String line = value.toString();
String[] columns = line.split("\\t");
if(columns.length == 6)
{
String storeNameString = columns[2];
Text storeName = new Text(storeNameString);
String storeRevenueString = columns[4];
IntWritable storeRevenue = new IntWritable(Integer.parseInt(storeRevenueString));
context.write(storeName, storeRevenue);
}
}
}
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>{
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException , InterruptedException {
Text storeName = key;
int storeSales = 0;
while(values.iterator().hasNext())
{
storeSales += values.iterator().next().get();
}
context.write(storeName, new IntWritable(storeSales));
}
}
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Driver {
public static void main(String[] args) throws Exception {
// this main function will call run method defined above.
// TODO Auto-generated method stub
Configuration conf=new Configuration();
@SuppressWarnings("unused")
Job job = new Job(conf , "Sales Per Store");
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setJarByClass(Driver.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
示例输入文件:
2012-01-01 09.00 sanJose clothin 214 amex
2012-01-01 09.00西雅图音乐320大师
2012-01-01 09.00西雅图elec 3120大师
2012-01-01 09.00 sanJose香水3200 amex
输出文件:
cat test123 / part-r-00000
sanJose 3414
西雅图3440
答案 1 :(得分:0)
我相信我在这里找到了问题。使用line.split方法时,您不正确地转义了制表符。这是因为String.split
方法将其输入解释为正则表达式。使用正则表达式时,在使用\\t
时,指定制表符的正确方法是\t
。这是因为必须转义反斜杠本身。请注意,您缺少\
个字符。
纠正分裂条件
String[] columns = line.split("\\t");