Python Pandas:使用两种不同大小的数据帧进行计算

时间:2015-04-27 01:18:09

标签: python pandas time-series

我有两个不同大小的数据框,我想用它来计算。第一个数据集是时间序列。第二个数据集是长期月平均值。

第一个:

     year  month  snow_depth
0    1979      1   18.322581
1    1979      2   11.535714
2    1979      3    5.322581
3    1979      4    0.300000
4    1979      5    0.000000
5    1979      6    0.000000
6    1979      7    0.000000
7    1979      8    0.000000
8    1979      9    0.000000
9    1979     10    0.322581
10   1979     11    2.366667
11   1979     12    1.290323
12   1980      1    7.838710
13   1980      2    9.758621
14   1980      3    3.967742
15   1980      4    0.000000
16   1980      5    0.000000
17   1980      6    0.000000
18   1980      7    0.000000
19   1980      8    0.000000
20   1980      9    0.000000
21   1980     10    0.000000
22   1980     11    0.100000
23   1980     12    0.000000
24   1981      1    4.290323
25   1981      2   13.678571
26   1981      3    2.967742
27   1981      4    0.066667
28   1981      5    0.000000
29   1981      6    0.000000
30   1981      7    0.000000
31   1981      8    0.000000
32   1981      9    0.000000
33   1981     10    0.387097
34   1981     11    5.000000
35   1981     12   15.741935

第二个:

month            
1       14.385199
2       15.312301
3        6.510436
4        0.268908
5        0.005819
6        0.000000
7        0.000000
8        0.000000
9        0.000000
10       0.363676
11       2.350980
12       6.730550

我使用的代码包含在下面:

oname = 'Z:/Dan/SnowStatData/Monthly/Observations/'+str(stations[c])+'Observations.txt'

df = pd.read_table(oname,sep='\t',usecols=(0,1,2),names=['year','month','snow_depth'],na_values=-999)
df = df.replace(np.nan,0)
g = df.groupby(['month'])
oavg = g.aggregate({'snow_depth':np.average})

我试过从原始数据帧中简单地减去oavg,但是第一个数据值最终成为NaN(因为它似乎是由df的索引而不是月份)然后在索引#12之后,我得到了NaNs 。有没有一种简单的方法可以逐年完成并减去oavg,这样我就可以完全脱离平均值?

编辑:这是我最终想要的:

     year  month  snow_depth
0    1979      1   18.322581 - oavg[month=1]
1    1979      2   11.535714 - oavg[month=2]
2    1979      3    5.322581 - oavg[month=3]
3    1979      4    0.300000 - oavg[month=4]
4    1979      5    0.000000 - oavg[month=5]
5    1979      6    0.000000 - oavg[month=6]
6    1979      7    0.000000 - oavg[month=7]
7    1979      8    0.000000 - oavg[month=8]
8    1979      9    0.000000 - oavg[month=9]
9    1979     10    0.322581 - oavg[month=10]
10   1979     11    2.366667 - oavg[month=11]
11   1979     12    1.290323 - oavg[month=12]

然后每年重复一次:

12   1980      1    7.838710 - oavg[month=1]
13   1980      2    9.758621 - oavg[month=2]
14   1980      3    3.967742 - oavg[month=3]

等。等

2 个答案:

答案 0 :(得分:1)

我首先将df2的列重命名为&av;':

df2.columns = ['avg']

然后,将平均降雪量合并到df1,然后计算差异:

df3 = df1.merge(df2, how='left', left_on='month', right_index=True, suffixes=('', '_rhs'))

df3['difference'] = df3['snow_depth'] - df3['avg']

>>> df3
    year  month  snow_depth        avg  difference
0   1979      1   18.322581  14.385199    3.937382
1   1979      2   11.535714  15.312301   -3.776587
2   1979      3    5.322581   6.510436   -1.187855
3   1979      4    0.300000   0.268908    0.031092
4   1979      5    0.000000   0.005819   -0.005819
5   1979      6    0.000000   0.000000    0.000000
6   1979      7    0.000000   0.000000    0.000000
7   1979      8    0.000000   0.000000    0.000000
8   1979      9    0.000000   0.000000    0.000000
9   1979     10    0.322581   0.363676   -0.041095
10  1979     11    2.366667   2.350980    0.015687
11  1979     12    1.290323   6.730550   -5.440227
12  1980      1    7.838710  14.385199   -6.546489
13  1980      2    9.758621  15.312301   -5.553680
14  1980      3    3.967742   6.510436   -2.542694
15  1980      4    0.000000   0.268908   -0.268908
16  1980      5    0.000000   0.005819   -0.005819
17  1980      6    0.000000   0.000000    0.000000
18  1980      7    0.000000   0.000000    0.000000
19  1980      8    0.000000   0.000000    0.000000
20  1980      9    0.000000   0.000000    0.000000
21  1980     10    0.000000   0.363676   -0.363676
22  1980     11    0.100000   2.350980   -2.250980
23  1980     12    0.000000   6.730550   -6.730550
24  1981      1    4.290323  14.385199  -10.094876
25  1981      2   13.678571  15.312301   -1.633730
26  1981      3    2.967742   6.510436   -3.542694
27  1981      4    0.066667   0.268908   -0.202241
28  1981      5    0.000000   0.005819   -0.005819
29  1981      6    0.000000   0.000000    0.000000
30  1981      7    0.000000   0.000000    0.000000
31  1981      8    0.000000   0.000000    0.000000
32  1981      9    0.000000   0.000000    0.000000
33  1981     10    0.387097   0.363676    0.023421
34  1981     11    5.000000   2.350980    2.649020
35  1981     12   15.741935   6.730550    9.011385

答案 1 :(得分:1)

试一试。使用地图直接从您的一系列平均值中提取

df["diff"] = df["snow_depth"] - df["month"].map(nameofyourseries)

        year  month  snow_depth       diff
0   1979      1   18.322581   3.937382
1   1979      2   11.535714  -3.776587
2   1979      3    5.322581  -1.187855
3   1979      4    0.300000   0.031092
4   1979      5    0.000000  -0.005819
5   1979      6    0.000000   0.000000
6   1979      7    0.000000   0.000000
7   1979      8    0.000000   0.000000
8   1979      9    0.000000   0.000000
9   1979     10    0.322581  -0.041095
10  1979     11    2.366667   0.015687
11  1979     12    1.290323  -5.440227
12  1980      1    7.838710  -6.546489
13  1980      2    9.758621  -5.553680
14  1980      3    3.967742  -2.542694
15  1980      4    0.000000  -0.268908
16  1980      5    0.000000  -0.005819
17  1980      6    0.000000   0.000000
18  1980      7    0.000000   0.000000
19  1980      8    0.000000   0.000000
20  1980      9    0.000000   0.000000
21  1980     10    0.000000  -0.363676
22  1980     11    0.100000  -2.250980
23  1980     12    0.000000  -6.730550
24  1981      1    4.290323 -10.094876
25  1981      2   13.678571  -1.633730
26  1981      3    2.967742  -3.542694
27  1981      4    0.066667  -0.202241
28  1981      5    0.000000  -0.005819
29  1981      6    0.000000   0.000000
30  1981      7    0.000000   0.000000
31  1981      8    0.000000   0.000000
32  1981      9    0.000000   0.000000
33  1981     10    0.387097   0.023421
34  1981     11    5.000000   2.649020
35  1981     12   15.741935   9.011385