在Python中有效地检查大量对象的欧几里德距离

时间:2015-04-27 00:13:04

标签: python numpy vectorization computational-geometry

在路线规划算法中,我尝试根据到另一个节点的距离对节点列表执行过滤。我实际上是从原始场景图中提取列表。我使用术语" cell"引用一个简单的场景图中的一个卷,我们从中获取了一个彼此接近的节点列表。

现在,我将其实现为:

# SSCCE version of the core function
def nodes_in_range(src, cell, maxDist):
    srcX, srcY, srcZ = src.x, src.y, src.z
    maxDistSq = maxDist ** 2
    for node in cell:
        distSq = (node.x - srcX) ** 2
        if distSq > maxDistSq: continue
        distSq += (node.y - srcY) ** 2
        if distSq > maxDistSq: continue
        distSq += (node.z - srcZ) ** 2
        if distSq <= maxDistSq:
            yield node, distSq ** 0.5  # fast sqrt

from collections import namedtuple
class Node(namedtuple('Node', ('ID', 'x', 'y', 'z'))):
    # actual class has assorted other properties
    pass

# 1, 3 and 9 are <= 4.2 from Node(1)
cell = [
    Node(1, 0, 0, 0),
    Node(2, -2, -3, 4),
    Node(3, .1, .2, .3),
    Node(4, 2.3, -3.3, -4.5),
    Node(5, -2.5, 4.5, 5),
    Node(6, 4, 3., 2.),
    Node(7, -2.46, 2.46, -2.47),
    Node(8, 2.45, -2.46, -2.47),
    Node(9, .5, .5, .1),
    Node(10, 5, 6, 7),
    # In practice, cells have upto 600 entries
]

if __name__ == "__main__":
    for node, dist in nodes_in_range(cell[0], cell, 4.2):
        print("{:3n} {:5.2f}".format(node.ID, dist))

这个例程被大量调用(在某些查询中被调用10 ^ 7 +次),因此每个perf都很重要,并且避免使用条件的成员查找实际上有所帮助。

我尝试做的是切换到numpy并组织单元格以便我可以进行矢量化。我想要实现的是:

import numpy
import numpy.linalg
contarry = numpy.ascontiguousarray
float32 = numpy.float32

# The "np_cell" has two arrays: one is the list of nodes and the
# second is a vectorizable array of their positions.
# np_cell[N][1] == numpy array position of np_cell[N][0]

def make_np_cell(cell):
    return (
        cell,
        contarry([contarry((node.x, node.y, node.z), float32) for node in cell]),
     )

# This version fails because norm returns a single value.
def np_nodes_in_range1(srcPos, np_cell, maxDist):
    distances = numpy.linalg.norm(np_cell[1] - srcPos)

    for (node, dist) in zip(np_cell[0], distances):
        if dist <= maxDist:
            yield node, dist

# This version fails because 
def np_nodes_in_range2(srcPos, np_cell, maxDist):
    # this will fail because the distances are wrong
    distances = numpy.linalg.norm(np_cell[1] - srcPos, ord=1, axis=1)
    for (node, dist) in zip(np_cell[0], distances):
        if dist <= maxDist:
            yield node, dist

# This version doesn't vectorize and so performs poorly
def np_nodes_in_range3(srcPos, np_cell, maxDist):
    norm = numpy.linalg.norm
    for (node, pos) in zip(np_cell[0], np_cell[1]):
        dist = norm(srcPos - pos)
        if dist <= maxDist:
            yield node, dist

if __name__ == "__main__":
    np_cell = make_np_cell(cell)
    srcPos = np_cell[1][0]  # Position column [1], first node [0]
    print("v1 - fails because it gets a single distance")
    try:
        for node, dist in np_nodes_in_range1(srcPos, np_cell, float32(4.2)):
            print("{:3n} {:5.2f}".format(node.ID, dist))
    except TypeError:
        print("distances was a single value")

    print("v2 - gets the wrong distance values")
    for node, dist in np_nodes_in_range2(srcPos, np_cell, float32(4.2)):
        print("{:3n} {:5.2f}".format(node.ID, dist))

    print("v3 - slower")
    for node, dist in np_nodes_in_range3(srcPos, np_cell, float32(4.2)):
        print("{:3n} {:5.2f}".format(node.ID, dist))

组合整数为here - 我添加了一个v4,尝试使用enumerate代替zip,并发现它的速度大约为12us。

样本输出:

  1  0.00
  3  0.37
  9  0.71
v1 - fails because it gets a single distance
distances was a single value
v2 - gets the wrong distance values
  1  0.00
  3  0.60
  9  1.10
v3 - slower
  1  0.00
  3  0.37
  9  0.71
v4 - v2 using enumerate
  1  0.00
  3  0.60
  9  1.10

至于性能,我们可以使用timeit进行测试。我将通过简单的乘法来增加单元中节点的数量:

In [2]: from sscce import *
In [3]: cell = cell * 32   # increase to 320 nodes
In [4]: len(cell)
Out[4]: 320
In [5]: %timeit -n 1000 -r 7 sum(1 for _ in nodes_in_range(cell[0], cell, 4.2))
1000 loops, best of 7: 742 µs per loop
In [6]: np_cell = make_np_cell(cell)
In [7]: srcPos = np_cell[1][0]
In [8]: %timeit -n 1000 -r 7 sum(1 for _ in np_nodes_in_range2(srcPos, np_cell, numpy.float32(4.2)))
1000 loops, best of 7: 136 µs per loop
In [9]: %timeit -n 1000 -r 7 sum(1 for _ in np_nodes_in_range3(srcPos, np_cell, numpy.float32(4.2)))
1000 loops, best of 7: 3.64 ms per loop

亮点:

nodes_in_range
    1000 loops, best of 7: 742 µs per loop

np_nodes_in_range2
    1000 loops, best of 7: 136 µs per loop

np_nodes_in_range3
    1000 loops, best of 7: 3.64 ms per loop # OUCH

问题:

  1. 我对矢量化距离计算有什么问题?

    distances = numpy.linalg.norm(np_cell[1] - srcPos)
    

    VS

    distances = numpy.linalg.norm(np_cell[1] - srcPos, ord=1, axis=1)
    
  2. 这是最好的方法吗?

  3. 细胞数量在几个节点和数百个节点之间变化。我目前正在遍历单元格,但似乎我想整理一整套候选人(nodes[], positions[]),尽管可能需要为此构建列表的额外成本(我总是可以使用批量累加器,以便我总是尝试和在排水之前用累积器填充至少1024个位置)。但我认为这种想法是由我使用连续数组形成的。我应该期待像:​​

    nodes_in_range(src, chain(cell.nodes for cell in scene if cell_in_range(boundingBox)))
    
  4. 并不担心试图压扁整个事情?

1 个答案:

答案 0 :(得分:4)

  
      
  1. 我对矢量化距离计算有什么问题?

    distances = numpy.linalg.norm(np_cell[1] - srcPos)
    
         

    VS

    distances = numpy.linalg.norm(np_cell[1] - srcPos, ord=1, axis=1)
    
  2.   

首先,如果axis=Nonenp.linalg.norm将计算向量范数(如果输入是1D)或矩阵范数(如果输入是多维的)。这两个都是标量。

其次,ord=1表示L1标准(即Manhattan distance),而不是欧几里德距离,如标题中所述。

  
      
  1. 这是最好的方法吗?
  2.   

k-D tree可能会更快 。您可以使用scipy.spatial.cKDTree进行球搜索,以查找与查询点相距一定距离的节点:

import numpy as np
from scipy.spatial import cKDTree

# it will be much easier (and faster) to deal with numpy arrays here (you could
# always look up the corresponding node objects by index if you wanted to)
X = np.array([(n.x, n.y, n.z) for n in cell])

# construct a k-D tree
tree = cKDTree(X)

# query it with the first point, find the indices of all points within a maximum
# distance of 4.2 of the query point
query_point = X[0]
idx = tree.query_ball_point(query_point, r=4.2, p=2)

# these indices are one out from yours, since they start at 0 rather than 1
print(idx)
# [0, 2, 8]

# query_ball_point doesn't return the distances, but we can easily compute these
# using broadcasting
neighbor_points = X[idx]

d = np.sqrt(((query_point[None, :] - neighbor_points) ** 2).sum(1))
print(d)
# [ 0.          0.37416574  0.71414284]

基准:

即使对于非常多的积分,查询cKDTree的速度也非常快:

X = np.random.randn(10000000, 3)
tree = cKDTree(X)

%timeit tree.query_ball_point(np.random.randn(3), r=4.2)
# 1 loops, best of 3: 229 ms per loop

正如您在评论中提到的,上面的示例是对性能的严格测试,而不是您的数据。由于选择了距离公差,以及数据为高斯(因此聚集在0附近)的事实,它匹配10m点的大约99%。

这是对具有更严格距离截止值的统一数据的测试,其匹配约30%的点,如您的示例所示:

%timeit tree.query_ball_point((0., 0., 0.), r=1.2)
# 10 loops, best of 3: 86 ms per loop

显然,这比您使用的点数要多得多。对于您的示例数据:

tree = cKDTree(np_cell[1])
%timeit tree.query_ball_point(np_cell[1][0], r=4.2)
# The slowest run took 4.26 times longer than the fastest. This could mean that an intermediate result is being cached 
# 100000 loops, best of 3: 16.9 µs per loop

这可以轻松地击败我的机器上的np_nodes_in_range2功能:

%timeit sum(1 for _ in np_nodes_in_range2(srcPos, np_cell, numpy.float32(4.2)))
# The slowest run took 7.77 times longer than the fastest. This could mean that an intermediate result is being cached 
# 10000 loops, best of 3: 84.4 µs per loop

需要考虑的其他事项:

如果您需要同时查询多个点,构建第二个树并使用query_ball_tree而不是query_ball_point会更有效:

X = np.random.randn(100, 3)
Y = np.random.randn(10, 3)
tree1 = cKDTree(X)
tree2 = cKDTree(Y)

# indices contains a list-of-lists, where the ith sublist contains the indices
# of the neighbours of Y[i] in X
indices = tree2.query_ball_tree(tree1, r=4.2)

如果您不关心指数,只想要球中的点数,使用count_neighbours可能会更快:

n_neighbors = tree2.count_neighbors(tree1, r=4.2)