有没有办法让 dplyr 连接数据库管道数据到该数据库中的新表,从不在本地下载数据?
我想按照以下方式做点什么:
tbl(con, "mytable") %>%
group_by(dt) %>%
tally() %>%
write_to(name = "mytable_2", schema = "transformed")
答案 0 :(得分:7)
虽然我完全同意学习SQL的建议,但您可以利用dplyr
不会提取数据直到它必须使用dplyr
构建查询的事实,添加TO TABLE
子句,然后使用dplyr::do()
运行SQL语句,如:
# CREATE A DATABASE WITH A 'FLIGHTS' TABLE
library(RSQLite)
library(dplyr)
library(nycflights13)
my_db <- src_sqlite("~/my_db.sqlite3", create = T)
flights_sqlite <- copy_to(my_db, flights, temporary = FALSE, indexes = list(
c("year", "month", "day"), "carrier", "tailnum"))
# BUILD A QUERY
QUERY = filter(flights_sqlite, year == 2013, month == 1, day == 1) %>%
select( year, month, day, carrier, dep_delay, air_time, distance) %>%
mutate( speed = distance / air_time * 60) %>%
arrange( year, month, day, carrier)
# ADD THE "TO TABLE" CLAUSE AND EXECUTE THE QUERY
do(paste(unclass(QUERY$query$sql), "TO TABLE foo"))
你甚至可以写一点功能:
to_table <- function(qry,tbl)
dplyr::do(paste(unclass(qry$query$sql), "TO TABLE",tbl))
并将查询传递到该函数中,如下所示:
filter(flights_sqlite, year == 2013, month == 1, day == 1) %>%
select( year, month, day, carrier, dep_delay, air_time, distance) %>%
mutate( speed = distance / air_time * 60) %>%
arrange( year, month, day, carrier) %>%
to_table('foo')