使用NLTK电影评论语料库进行分类

时间:2015-04-24 14:36:04

标签: python nltk sentiment-analysis

我尝试创建自己的语料库,用于推文的情绪分析(无论是正面还是负面)。

我是第一次尝试现有的NLTK电影评论语料库。 但是,如果我使用此代码:

import string
from itertools import chain

from nltk.corpus import movie_reviews as mr
from nltk.corpus import stopwords
from nltk.probability import FreqDist
from nltk.classify import NaiveBayesClassifier as nbc
import nltk

stop = stopwords.words('english')
documents = [([w for w in mr.words(i) if w.lower() not in stop and w.lower() not in string.punctuation], i.split('/')[0]) for i in mr.fileids()]

word_features = FreqDist(chain(*[i for i,j in documents]))
word_features = word_features.keys()[:100]

numtrain = int(len(documents) * 90 / 100)
train_set = [({i:(i in tokens) for i in word_features}, tag) for tokens,tag in documents[:numtrain]]
test_set = [({i:(i in tokens) for i in word_features}, tag) for tokens,tag in documents[numtrain:]]

classifier = nbc.train(train_set)
print nltk.classify.accuracy(classifier, test_set)
classifier.show_most_informative_features(5)

我收到输出:

0.31
Most Informative Features
               uplifting = True              pos : neg    =      5.9 : 1.0
               wednesday = True              pos : neg    =      3.7 : 1.0
             controversy = True              pos : neg    =      3.4 : 1.0
                  shocks = True              pos : neg    =      3.0 : 1.0
                  catchy = True              pos : neg    =      2.6 : 1.0

而不是预期的输出(见Classification using movie review corpus in NLTK/Python):

0.655
Most Informative Features
                     bad = True              neg : pos    =      2.0 : 1.0
                  script = True              neg : pos    =      1.5 : 1.0
                   world = True              pos : neg    =      1.5 : 1.0
                 nothing = True              neg : pos    =      1.5 : 1.0
                     bad = False             pos : neg    =      1.5 : 1.0

我使用与其他StackOverflow页面完全相同的代码,我的NLTK(和他们的)是最新的,我也有最新的电影评论语料库。任何人都知道出了什么问题?

谢谢!

1 个答案:

答案 0 :(得分:0)

我的猜测是下面的行有所不同:

word_features = word_features.keys()[:100]

word_features是一个dict(Counter更精确)对象,keys()方法以任意顺序返回值,因此训练集中的要素列表与初始帖子中的要素列表不同。

https://docs.python.org/2/library/stdtypes.html#dict.items