假设我有两个功能如下:
@tornado.gen.coroutine
def f():
for i in range(4):
print("f", i)
yield tornado.gen.sleep(0.5)
@tornado.gen.coroutine
def g():
yield tornado.gen.sleep(1)
print("Let's raise RuntimeError")
raise RuntimeError
通常,函数f
可能包含无限循环且永不返回(例如,它可以处理某个队列)。
我想要做的就是能够在任何时候中断它。
最明显的方法不起作用。只有在函数f
退出后才会引发异常(如果它是无穷无尽的,它显然永远不会发生)。
@tornado.gen.coroutine
def main():
try:
yield [f(), g()]
except Exception as e:
print("Caught", repr(e))
while True:
yield tornado.gen.sleep(10)
if __name__ == "__main__":
tornado.ioloop.IOLoop.instance().run_sync(main)
输出:
f 0
f 1
Let's raise RuntimeError
f 2
f 3
Traceback (most recent call last):
File "/tmp/test/lib/python3.4/site-packages/tornado/gen.py", line 812, in run
yielded = self.gen.send(value)
StopIteration
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
<...>
File "test.py", line 16, in g
raise RuntimeError
RuntimeError
也就是说,只有当两个协同程序都返回时才会引发异常(两个期货都会解决)。
这部分由tornado.gen.WaitIterator
解决,但它是错误的(unless I'm mistaken)。但那不是重点。
它仍然无法解决中断现有协同程序的问题。即使启动它的函数退出,Coroutine仍会继续运行。
编辑:似乎协同取消是Tornado不支持的东西,不像Python的asyncio,你可以轻松地在每个屈服点抛出CancelledError
。
答案 0 :(得分:4)
如果你use WaitIterator according to the instructions,并使用toro.Event在协同程序之间发出信号,它会按预期工作:
from datetime import timedelta
import tornado.gen
import tornado.ioloop
import toro
stop = toro.Event()
@tornado.gen.coroutine
def f():
for i in range(4):
print("f", i)
# wait raises Timeout if not set before the deadline.
try:
yield stop.wait(timedelta(seconds=0.5))
print("f done")
return
except toro.Timeout:
print("f continuing")
@tornado.gen.coroutine
def g():
yield tornado.gen.sleep(1)
print("Let's raise RuntimeError")
raise RuntimeError
@tornado.gen.coroutine
def main():
wait_iterator = tornado.gen.WaitIterator(f(), g())
while not wait_iterator.done():
try:
result = yield wait_iterator.next()
except Exception as e:
print("Error {} from {}".format(e, wait_iterator.current_future))
stop.set()
else:
print("Result {} received from {} at {}".format(
result, wait_iterator.current_future,
wait_iterator.current_index))
if __name__ == "__main__":
tornado.ioloop.IOLoop.instance().run_sync(main)
现在,pip install toro
获取Event类。 Tornado 4.2将包含Event see the changelog。
答案 1 :(得分:1)
从版本5 Set variables开始。
在Python 3上,
col1 col2 col3 subID 0 1 11 X 1 1 1 11 X 1 2 1 11 Y 2 3 1 11 Y 2 4 1 11 Z 3 5 2 12 Y 1 6 2 12 Y 1 7 2 12 Z 2 8 2 12 Z 2 9 2 12 X 3 10 3 11 Y 1 11 3 11 X 2 12 3 11 Z 3 13 3 11 Z 3
始终是IOLoop
事件循环的包装器,并且使用asyncio
和asyncio.Future
代替它们的Tornado。
因此,您可以使用asyncio.Task
取消任务,即Tornado runs on asyncio
event loop。
您的示例中队列读取while-true循环可能看起来像这样。
asyncio
如果运行它,应该会看到:
import logging
from asyncio import CancelledError
from tornado import ioloop, gen
async def read_off_a_queue():
while True:
try:
await gen.sleep(1)
except CancelledError:
logging.debug('Reader cancelled')
break
else:
logging.debug('Pretend a task is consumed')
async def do_some_work():
await gen.sleep(5)
logging.debug('do_some_work is raising')
raise RuntimeError
async def main():
logging.debug('Starting queue reader in background')
reader_task = gen.convert_yielded(read_off_a_queue())
try:
await do_some_work()
except RuntimeError:
logging.debug('do_some_work failed, cancelling reader')
reader_task.cancel()
# give the task a chance to clean up, in case it
# catches CancelledError and awaits something
try:
await reader_task
except CancelledError:
pass
if __name__ == '__main__':
logging.basicConfig(level='DEBUG')
ioloop.IOLoop.instance().run_sync(main)
答案 2 :(得分:-1)
警告 :这不是可行的解决方案。看评论。即使您是新手(作为我自己),此示例也可以显示逻辑流程。谢谢@ nathaniel-j-smith和@wgh
使用更原始的东西(例如全局变量)有什么区别?
import asyncio
event = asyncio.Event()
aflag = False
async def short():
while not aflag:
print('short repeat')
await asyncio.sleep(1)
print('short end')
async def long():
global aflag
print('LONG START')
await asyncio.sleep(3)
aflag = True
print('LONG END')
async def main():
await asyncio.gather(long(), short())
if __name__ == '__main__':
asyncio.run(main())
它是用于 asyncio 的,但是我想这个想法还是一样的。这是一个半问题(为什么事件会更好?)。然而,解决方案可以产生作者需要的准确结果:
LONG START
short repeat
short repeat
short repeat
LONG END
short end
更新: slides可能对理解问题的核心很有帮助。