numpy sum给出了一个错误

时间:2015-04-23 18:59:49

标签: python numpy scipy scikit-learn

如何解决以下错误:dist = np.sum(train_data_features,axis = 0)   文件“/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy/core/fromnumeric.py”,第1711行,总计     返回总和(axis = axis,dtype = dtype,out = out) TypeError:sum()得到一个意外的关键字参数'dtype'

这是我的代码:

import os
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from KaggleWord2VecUtility import KaggleWord2VecUtility
import pandas as pd
import numpy as np

if __name__ == '__main__':
    train = pd.read_csv(os.path.join(os.path.dirname(__file__), 'data', 'NYTimesBlogTrain.csv'), header=0)
    test = pd.read_csv(os.path.join(os.path.dirname(__file__), 'data', 'NYTimesBlogTest.csv'), header=0)
    train["Abstract"].fillna(0)
    print 'A sample Abstract is:'
    print train["Abstract"][0]
    #raw_input("Press Enter to continue...")


    #print 'Download text data sets. If you already have NLTK datasets downloaded, just close the Python download window...'
    #nltk.download()  # Download text data sets, including stop words

    # Initialize an empty list to hold the clean reviews
    clean_train_reviews = []
    # Loop over each review; create an index i that goes from 0 to the length
    # of the movie review list
    print "Cleaning and parsing the training set abstracts...\n"
    #for i in xrange( 0, len(train["Abstract"])):
    for i in xrange( 0, 10):
        if pd.isnull(train["Abstract"][i])==False:
            clean_train_reviews.append(" ".join(KaggleWord2VecUtility.review_to_wordlist(train["Abstract"][i], True)))
        else:
            clean_train_reviews.append(" ")
    print clean_train_reviews  

    # ****** Create a bag of words from the training set
    #
    print "Creating the bag of words...\n"


    # Initialize the "CountVectorizer" object, which is scikit-learn's
    # bag of words tool.
    vectorizer = CountVectorizer(analyzer = "word",   \
                             tokenizer = None,    \
                             preprocessor = None, \
                             stop_words = None,   \
                             max_features = 5000)

    # fit_transform() does two functions: First, it fits the model
    # and learns the vocabulary; second, it transforms our training data
    # into feature vectors. The input to fit_transform should be a list of
    # strings.
    print clean_train_reviews
    train_data_features = vectorizer.fit_transform(clean_train_reviews)
    print 'train_data_features'
    print train_data_features
    print train_data_features.shape
    # Take a look at the words in the vocabulary
    vocab = vectorizer.get_feature_names()
    print vocab

    # Sum up the counts of each vocabulary word
    dist = np.sum(train_data_features, axis=0)

1 个答案:

答案 0 :(得分:1)

看起来你无法总结矢量化器给你的东西。你需要一种不同的方式来做总和,你应该能够在scipy's sparse library中找到,最有可能只是通过调用

dist = train_data_features.sum (axis=0)

我从coo_sparse matrix sum的文档中得到的。见下面的详细信息

来自sklearn documentation

  

此实现使用scipy.sparse.coo_matrix生成计数的稀疏表示。

来自谷歌搜索this type of error

  

之前没有用过,因为numpy对scipy.sparse一无所知。