我有两个data.tables
:samples, resources
resources
通过samples
和primary
ID与secondary
相关联。
我想首先通过主id将来自资源的信息与sample-table相结合,并且只有当它产生NA时,我才想要从同一个表(在一个data.table命令链中)中使用辅助资源。
# resources:
primary secondary info
1: 17 42 "I"
2: 18 NA "J"
3: 19 43 "K"
# samples:
name primary secondary
1: "a" 17 55
2: "b" 0 42
3 "c" 18 42
期望的结果是:
# joined tables:
name info # primary secondary
1: "a" "I"
2: "b" "I"
3: "c" "J"
通过primary
的第一次加入很容易,它会产生
# Update:
samples <- data.table(name = letters[1:3],
primary = c(17, 0, 18),
secondary = c(55, 42, 42))
resources <- data.table(primary = 17:19,
secondary = c(42, NA, 43),
info = LETTERS[9:11])
# first join:
setkey(samples, primary)
setkey(resources, primary)
samples[resources]
name info # primary secondary
1: "a" "I"
2: "b" NA
3: "c" "J"
但是呢?我需要用setkey(samples, secondary)
重新键入样本,对吗?然后将子集仅限于那些产生NA的行。但是在一个命令链中所有这一切都不可能实现(并且假设有两个以上的标准......)。我怎样才能更简洁地实现这一目标呢?
...使用data.tables的代码进行了更新。
答案 0 :(得分:5)
虽然你可以在一条线上做到这一点,但我认为这会掩盖你所做的事情的意义,让事情变得非常难以阅读/理解/调试/记住你一个月内做了什么,而且简直是坏事想法。
更小,更容易消化的块是imo的方式:
setkey(samples, primary)
setkey(resources, primary)
samples[resources, info := i.info]
setkey(samples, secondary)
setkey(resources, secondary)
samples[resources, info := ifelse(is.na(info), i.info, info)]
samples
# name primary secondary info
#1: b 0 42 I
#2: c 18 42 J
#3: a 17 55 I
# keep going with tertiary and so on if you like
正如@nachti在评论中指出的那样,您可能需要为1.9.5之前的版本添加allow.cartesian=TRUE
,具体取决于您的数据。
答案 1 :(得分:2)
这将是一个对resources
进行2次调用的链,其中一个在场景后重新设置。
library(data.table)
samples <- data.table(name = letters[1:3],
primary = c(17, 0, 18),
secondary = c(55, 42, 42))
resources <- data.table(primary = 17:19,
secondary = c(42, NA, 43),
info = LETTERS[9:11])
setkey(samples, primary)
setkey(resources, primary)
samples[resources, info := i.info
][, .(name, info),, secondary
][resources[, info,, secondary], info := ifelse(is.na(info), i.info, info)
][, secondary := NULL]
当您询问更复杂的例子时。值得注意的是data.table查询可以通过提前准备子查询参数作为模块轻松管理。它们可以在以后轻松有条件地管理。见下面的例子。
lkp2 <- quote(resources[, info,, secondary])
lkp2_formula <- quote(info := ifelse(is.na(info), i.info, info))
setkey(samples, primary)
samples[resources, info := i.info
][, .(name, info),, secondary
][eval(lkp2), eval(lkp2_formula)
][, secondary := NULL]
如果您严重依赖data.table链接流程,您可能会发现dtq包有用。
答案 2 :(得分:1)
我觉得在一个命令链中做这件事太棘手了,但我为你提供了一个解决方案:
### First step
samples[resources[samples, nomatch = 0], info := info]
samples
name primary secondary info
1: b 0 42 NA
2: a 17 55 I
3: c 18 42 J
### Second step
setkey(samples, secondary)
setkey(resources, secondary)
## create new column info1
samples[resources[samples[is.na(info)],
list(info1 = unique(info)), by = .EACHI],
info1 := info1]
## merge it to samples, where info is NA
samples[is.na(info), info := info1]
## remove info1 (and maybe other unused columns)
samples[, info1 := NULL]
## sort samples by name
setkey(samples, name)
samples
name primary secondary info
1: a 17 55 I
2: b 0 42 I
3: c 18 42 J
HTH
〜克