我之前在询问有关分析FSK信号的几个问题。我正在生成并记录采样率为44100的fsk信号,它包含两个频率,“1”为934Hz,“0”为510Hz,编码消息是一个字符串,我将其转换为二进制代表,每个位使用2048个样本。在表示数据本身的音调之前,我有一个频率为440Hz的预音。我使用以下代码来捕获音频字节,唯一的区别是我将它们写入ByteArrayOutputStream https://stackoverflow.com/questions/23432398/audio-recorder-in-android-process-the-audio-bytes
之前我使用8000采样率并决定提高传输速率,因此我改变了采样率。当我的录音机和发射器使用8000采样率时,我设法找到信号的起点并分析数据,由于某种原因,当我使用44100的采样率时,我的fft似乎不能正常工作,我找不到正确的频率,我甚至看不到我曾经用8000采样率工作时看到的泛音,我使用这个类中的hann窗口函数并乘以每个窗口:https://github.com/jpatanooga/Canova/blob/master/canova-data/canova-data-audio/src/main/java/org/canova/sound/musicg/dsp/WindowFunction.java。
目前,我只是在记录的数据中推进每个2048样本以查看结果。我不太清楚为什么fft不起作用,有什么想法?
我附上了一些我使用的功能:
将音频字节转换为表示标准化正弦波的doule数组的函数(发送的数据采用小端格式):
private double[] convertBytes2SineWave(byte[] byteArray)
{
double[] doubleArray = new double[byteArray.length / 2];
short temp;
double normalizedVal;
for (int i=0; i<doubleArray.length; i++)
{
//The data send in little endian format - first byte is low order byte
byte bLow = byteArray[2*i];
byte bHigh = byteArray[2*i + 1];
temp = (short)(((bHigh & 0x00FF) << 8) | (bLow & 0x00FF));
normalizedVal = temp / 32767.0 ;
doubleArray[i] = normalizedVal;
}
return doubleArray;
}
fft功能:
public double[] calculateFFT(double[] signalChunk, int numFFTPoint)
{
double mMaxFFTSample;
double temp;
Complex[] y;
Complex[] complexSignal = new Complex[numFFTPoint];
double[] absSignal = new double[numFFTPoint/2];
for(int i = 0; i < numFFTPoint; i++)
{
temp = signalChunk[i];
complexSignal[i] = new Complex(temp,0.0);
}
y = FFT.fft(complexSignal);
mMaxFFTSample = 0.0;
mPeakPos = 0;
for(int i = 0; i < (numFFTPoint/2); i++)
{
absSignal[i] = Math.sqrt(Math.pow(y[i].re(), 2) + Math.pow(y[i].im(), 2));
if(absSignal[i] > mMaxFFTSample)
{
mMaxFFTSample = absSignal[i];
mPeakPos = i;
}
}
return absSignal;
}
提取数据位的功能:
private void ExtractDataBits()
{
byte[] byteArrayData = ByteArrayAudioData.toByteArray();
sExtractedBits= new StringBuilder();
double binSize =((double)sampleRate/numberOfFFTPoints);
int HighFreqPos =(int) (freqOfHighTone/binSize);
int LowFreqPos =(int) (freqOfLowTone/binSize);
double[] daOriginalSine = convertBytes2SineWave(byteArrayData);
double[] smallArray;
int NumOfRuns = daOriginalSine.length /numberOfFFTPoints;
int startIndex = 0;
while(NumOfRuns > 0)
{
if(daOriginalSine.length - startIndex < numberOfFFTPoints)
break;
smallArray = new double[numberOfFFTPoints];
System.arraycopy(daOriginalSine, startIndex, smallArray, 0, numberOfFFTPoints);
smallArray = applyHannWindow(smallArray, numberOfFFTPoints);
double[]fftRes = calculateFFT(smallArray,numberOfFFTPoints);
if(fftRes[HighFreqPos] > fftRes[LowFreqPos])
sExtractedBits.append("1");
else
sExtractedBits.append("0");
startIndex = startIndex + numberOfFFTPoints;
NumOfRuns--;
}
}