I am trying to run a regression with lasagne/nolearn. I am having trouble finding documentation how to do that (new to deep learning in general).
Starting off with a simple network (one hidden layer)
from lasagne import layers
from lasagne.nonlinearities import softmax
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
print(np.shape(X)) # (137, 43)
print(np.shape(y)) # (137,)
layers_s = [('input', layers.InputLayer),
('dense0', layers.DenseLayer),
('output', layers.DenseLayer)]
net_s = NeuralNet(layers=layers_s,
input_shape=(None, num_features),
dense0_num_units=43,
output_num_units=1,
output_nonlinearity=None,
regression=True,
update=nesterov_momentum,
update_learning_rate=0.001,
update_momentum=0.9,
eval_size=0.2,
verbose=1,
max_epochs=100)
net_s.fit(X, y)
I get the following error:
TypeError Traceback (most recent call last)
<ipython-input-23-23c15ceec104> in <module>()
----> 1 net_s.fit(X, y)
/home/alex/anaconda3/lib/python3.4/site-packages/nolearn/lasagne.py in fit(self, X, y)
148 out, self.loss, self.update,
149 self.X_tensor_type,
--> 150 self.y_tensor_type,
151 )
152 self.train_iter_, self.eval_iter_, self.predict_iter_ = iter_funcs
/home/alex/anaconda3/lib/python3.4/site-packages/nolearn/lasagne.py in _create_iter_funcs(self, output_layer, loss_func, update, input_type, output_type)
298 all_params = get_all_params(output_layer)
299 update_params = self._get_params_for('update')
--> 300 updates = update(loss_train, all_params, **update_params)
301
302 train_iter = theano.function(
/home/alex/src/lasagne/lasagne/updates.py in nesterov_momentum(loss, all_params, learning_rate, momentum)
38 # such that the gradient can be evaluated at the current parameters.
39 def nesterov_momentum(loss, all_params, learning_rate, momentum=0.9):
---> 40 all_grads = theano.grad(loss, all_params)
41 updates = []
42
/home/alex/anaconda3/lib/python3.4/site-packages/theano/gradient.py in grad(cost, wrt, consider_constant, disconnected_inputs, add_names, known_grads, return_disconnected)
431
432 if cost is not None and cost.ndim != 0:
--> 433 raise TypeError("cost must be a scalar.")
434
435 if isinstance(wrt, set):
TypeError: cost must be a scalar.
Thanks!..
答案 0 :(得分:2)
不确定您使用的是什么版本的nolearn和千层面。我注意到你y
形状(137,)
。根据我的使用情况,这需要(137, 1)
才能适用于您的案例,并且通常情况下,dim 2需要与output_num_units
匹配。
尝试y.reshape((-1, 1))
。
如果这不起作用,则可能是Python 3兼容性问题。
答案 1 :(得分:2)
确保您使用已知可以合作的nolearn和Lasagne版本。
说你一直关注Using convolutional neural nets to detect facial keypoints tutorial。然后正确的做法是从this requirements.txt file安装依赖项,如下所示:
pip uninstall Lasagne
pip uninstall nolearn
pip install -r https://raw.githubusercontent.com/dnouri/kfkd-tutorial/master/requirements.txt
但是,如果您使用Git master中的nolearn,请确保安装requirements.txt file found there中的Lasagne版本:
pip uninstall Lasagne
pip install -r https://raw.githubusercontent.com/dnouri/nolearn/master/requirements.txt