给出以下数据框:
date type price
20150101 X 0.8
20150102 X 0.9
20150103 X 1.0
20150104 X 0.9
20150105 abc 12.3
20150106 abc 12.4
20150107 abc 12.4
20150108 X 0.7
20150109 X 0.6
20150110 X 0.9
20150111 abc 12.3
20150112 abc 12.4
20150113 X 0.5
20150114 X 0.6
20150115 abc 12.3
20150116 abc 12.4
数据由X的集群价格和abc的价格组成。我想根据' type'中的条目计算一个新列(称之为' position')和'价格'遵守以下规则:
1. 'position' = 0 if 'type'=='X'
2. 'position' = 1 if 'type'=='abc' and max of price of X in the 'previous section' is >=1
3. 'position' = -1 if 'type'=='abc' and min of price of X in the 'previous section' is <=0.5
4. 'position' = 0 if 'type'=='abc' and otherwise
5.Notes: definition of "previous section" is the period with cluster of prices of "X" between two sections of 'abc' prices. For example
for 20150105-20150107 previous section is 20150101-20150104
for 20150111-20150112 previous section is 20150108-20150110
for 20150115-20150116 previous section is 20150113-20150114
这样我就可以创建以下数据框:
date type price position
20150101 X 0.8 0
20150102 X 0.9 0
20150103 X 1.0 0
20150104 X 0.9 0
20150105 abc 12.3 1
20150106 abc 12.4 1
20150107 abc 12.4 1
20150108 X 0.7 0
20150109 X 0.6 0
20150110 X 0.9 0
20150111 abc 12.3 0
20150112 abc 12.4 0
20150113 X 0.5 0
20150114 X 0.6 0
20150115 abc 12.3 -1
20150116 abc 12.4 -1
我遇到的困难是我不知道如何定义上一节&#39;。我尝试使用pivot_table,这似乎更容易操作,我想生成相同的位置&#39;专栏如下:
date X abc position
20150101 0.8 nan 0
20150102 0.9 nan 0
20150103 1.0 nan 0
20150104 0.9 nan 0
20150105 nan 12.3 1
20150106 nan 12.4 1
20150107 nan 12.4 1
20150108 0.7 nan 0
20150109 0.6 nan 0
20150110 0.9 nan 0
20150111 nan 12.3 0
20150112 nan 12.4 0
20150113 0.5 nan 0
20150114 0.6 nan 0
20150115 nan 12.3 -1
20150116 nan 12.4 -1
但我仍然不知道如何定义上一节&#39;计算X的每个价格部分的最大值,最小值或任何其他值。帮助!!!
答案 0 :(得分:1)
问题的一般形式是找到重复值的出现。熊猫的本能应该是达到groupby
,但实际系列值的简单groupby
在这里不起作用,因为它将组合非连续的相似值。相反,我喜欢使用Series.diff
和Series.cumsum
。
series = pd.Series(["abc", "abc", "x", "x", "x", "abc", "abc"])
您不能在字符串上使用Series.diff
,因此首先要创建string到int的映射。这些值只需要是唯一的。
mapping = {v: k for k, v in enumerate(set(series)) # {"abc": 0, "x" 1}
int_series = series.map(mapping) # pd.Series([0, 0, 1, 1, 1, 0, 0])
现在您可以使用Series.diff
。 Series.diff
为您提供series[n] - series[n - 1]
。起始值没有前一行,因此始终为NaN
。
int_series.diff() # [NaN, 0, 1, 0, 0, -1, 0]
使用Series.diff
,我们可以通过测试!= 0
找到每个组的开头。
starts = int_series.diff() != 0 # [True, False, True, False, False, True, False]
将其与原始值进行比较,看看我们如何找到每个组的开头:
starts # [True, False, True, False, False, True, False]
series # ["abc", "abc", "x", "x", "x", "abc", "abc"]
我们不想只知道每个小组的开头 - 我们想知道每一行中的小组.Easy-peasy - Series.cumsum
将每一行添加到上一行。方便的是,如果你试图在Python中添加bool
,他们就会被迫int
s,他们的超类。
True + True # 2
True + False # 1
groups = starts.cumsum() # [1, 1, 2, 2, 2, 3, 3]
现在,您可以使用groupby(groups)
独立处理每个群组。
for _, sequence in series.groupby(groups):
print sequence
# ["abc", "abc"]
# ["x", "x, "x"]
# ["abc", "abc"]
在您的特定情况下:
group_mins = prices.groupby(groups).min()
previous_group_below_min = (groups - 1).map(group_mins) < SOME_CONSTANT