我正在尝试使用formula
生成要在自定义优化器函数中使用的model.matrix
对象。
它在大多数情况下都很有效,但在涉及因子因素相互作用时,我想将交互指定为虚拟编码而不是效果编码。
以下面的数据集为例:
set.seed(1987)
myDF <- data.frame(Y = rnorm(100),
X1 = factor(LETTERS[sample(1:3, 100, replace = TRUE)]),
X2 = factor(LETTERS[sample(1:3, 100, replace = TRUE)]))
head(myDF)
:
和/
运算符都会创建一个效果编码模型矩阵(我认为后者是一个加法效应结构)。
head(model.matrix(formula(Y ~ X1 : X2), data = myDF))
head(model.matrix(formula(Y ~ X1 / X2), data = myDF))
但我希望生成一个虚拟编码模型矩阵,它会为X1
的每个级别省略第一级X2
。导致这些术语(列):
X1B:X2A
X1C:X2A
X1B:X2B
X1C:X2B
X1B:X2C
X1C:X2C
有没有办法实现这个目标?
答案 0 :(得分:2)
~X1:X2-1
您要找的是什么?
制作测试数据(如上所述):
set.seed(1987)
myDF <- data.frame(Y = rnorm(100),
X1 = factor(LETTERS[sample(1:3, 100, replace = TRUE)]),
X2 = factor(LETTERS[sample(1:3, 100, replace = TRUE)]))
生成模型矩阵:
mm1 <- model.matrix(formula(Y ~ X1 : X2 - 1), data = myDF)
head(mm1)
## X1A:X2A X1B:X2A X1C:X2A X1A:X2B X1B:X2B X1C:X2B X1A:X2C X1B:X2C X1C:X2C
## 1 0 0 0 0 1 0 0 0 0
## 2 1 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 1 0
## 4 0 0 0 0 0 1 0 0 0
## 5 0 0 0 1 0 0 0 0 0
## 6 0 0 0 0 0 0 1 0 0
或许你真的只想要排除一些列:
mm0 <- model.matrix(formula(Y ~ X1 : X2), data = myDF)
mm0B <- mm0[,!grepl("(Intercept|^X1A:)",colnames(mm0))]
## X1B:X2A X1C:X2A X1B:X2B X1C:X2B X1B:X2C X1C:X2C
## 1 0 0 1 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 1 0
## 4 0 0 0 1 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
我认为你也可能对零和对比感兴趣:
mm2 <- model.matrix(formula(Y ~ X1 : X2 - 1), data = myDF,
contrasts.arg=list(X1=contr.sum,X2=contr.sum))
答案 1 :(得分:0)
以下是另一项试验。
set.seed(1987)
myDF <- data.frame(Y = rnorm(100),
X1 = factor(LETTERS[sample(1:3, 100, replace = TRUE)]),
X2 = factor(LETTERS[sample(1:3, 100, replace = TRUE)]))
# row subsetting to exclude A
modelMat <- model.matrix(formula(Y ~ X1 : X2), data = myDF[myDF$X1 != 'A',])
# column subsetting to eliminate all columns including X1A
modelMat <- modelMat[,substring(colnames(modelMat), 1, 3) != "X1A"]
head(modelMat)
(Intercept) X1B:X2A X1C:X2A X1B:X2B X1C:X2B X1B:X2C X1C:X2C
1 1 0 0 1 0 0 0
3 1 0 0 0 0 1 0
4 1 0 0 0 1 0 0
8 1 0 0 0 0 1 0
10 1 0 0 0 0 0 1
11 1 0 0 0 0 0 1