我希望使用R比使用Excel更快地创建数据透视表(并减少错误空间。
例如,如果我有这样的数据集:
id<-c("p","q","r","s","t","u","p","q","r","s","t","u")
time<-c(0,0,0,0,0,0,1,1,1,1,1,1)
foldchange<-rnorm(12)
log2foldchange<-rnorm(12)
p.value<-rnorm(12)
df<-data.frame(id,time,foldchange,log2foldchange,p.value)
我希望按照excel使用数据透视表看起来像这样(或尽可能接近)来排序表格:
有什么想法吗?从这里的例子中无法弄清楚如何做到这一点(或类似于此的任何事情)。
谢谢!
答案 0 :(得分:4)
如果要为示例
生成随机数,则应set.seed
set.seed(1)
id<-c("p","q","r","s","t","u","p","q","r","s","t","u")
time<-c(0,0,0,0,0,0,1,1,1,1,1,1)
foldchange<-rnorm(12)
log2foldchange<-rnorm(12)
p.value<-rnorm(12)
df<-data.frame(id,time,foldchange,log2foldchange,p.value)
reshape(df, dir = 'wide', idvar = 'id', timevar = 'time')
# id foldchange.0 log2foldchange.0 p.value.0 foldchange.1 log2foldchange.1 p.value.1
# 1 p -0.6264538 -0.62124058 0.61982575 0.4874291 0.82122120 1.35867955
# 2 q 0.1836433 -2.21469989 -0.05612874 0.7383247 0.59390132 -0.10278773
# 3 r -0.8356286 1.12493092 -0.15579551 0.5757814 0.91897737 0.38767161
# 4 s 1.5952808 -0.04493361 -1.47075238 -0.3053884 0.78213630 -0.05380504
# 5 t 0.3295078 -0.01619026 -0.47815006 1.5117812 0.07456498 -1.37705956
# 6 u -0.8204684 0.94383621 0.41794156 0.3898432 -1.98935170 -0.41499456
或只是
reshape(df, dir = 'wide')
# id foldchange.0 log2foldchange.0 p.value.0 foldchange.1 log2foldchange.1 p.value.1
# 1 p -0.6264538 -0.62124058 0.61982575 0.4874291 0.82122120 1.35867955
# 2 q 0.1836433 -2.21469989 -0.05612874 0.7383247 0.59390132 -0.10278773
# 3 r -0.8356286 1.12493092 -0.15579551 0.5757814 0.91897737 0.38767161
# 4 s 1.5952808 -0.04493361 -1.47075238 -0.3053884 0.78213630 -0.05380504
# 5 t 0.3295078 -0.01619026 -0.47815006 1.5117812 0.07456498 -1.37705956
# 6 u -0.8204684 0.94383621 0.41794156 0.3898432 -1.98935170 -0.41499456
非常直截了当,对@ data.table?
答案 1 :(得分:2)
使用data.table v1.9.5
,这非常简单:
require(data.table) # v1.9.5+
dcast(setDT(df), id ~ time, value.var = names(df)[3:5])
PS:我假设p值仅仅是为了它...因为它们是-ve /&gt;你应该从均匀分布中生成随机值。
答案 2 :(得分:0)
使用不太直观的dplyr
和tidyr
library(dplyr); library(tidyr)
df %>% gather(name, value, c(-id, -time)) %>% mutate(new=paste(name, time, sep=".")) %>%
select(-time, -name) %>% spread(new, value)
逻辑如下:
将foldchange
的数据转置为p.value
这是通过代码df %>% gather(name, value, c(-id, -time))
完成的。
接下来在excel中将您想要拥有的变量连接为column labels
,这是通过mutate(new=paste(name, time, sep="."))
部分完成的
最后通过首先选择您感兴趣的列的spread(new, value)
来转置连接变量。
根据您的排序方式(列),您也可以尝试
df %>% gather(name, value, c(-id, -time)) %>% mutate(new=paste(time, name, sep=".")) %>%
select(-time, -name) %>% spread(new, value)
差异为mutate(new=paste(time, name, sep="."))