首先,我是FORTRAN的完全新手。据说我试图“构建”一个盒子,然后随机生成100个原子的x,y,z坐标。从那里,目标是计算每个原子之间的距离,这成为Lennard-Jones势能方程的值“r”。然后计算LJ势,最后求出整个盒子的潜力。我之前提出的关于这个项目的问题是here。问题是我一遍又一遍地得到相同的计算值。我的代码如下。
program energytot
implicit none
integer, parameter :: n = 100
integer :: i, j, k, seed(12)
double precision :: sigma, r, epsilon, lx, ly, lz
double precision, dimension(n) :: x, y, z, cx, cy, cz
double precision, dimension(n*(n+1)/2) :: dx, dy, dz, LJx, LJy, LJz
sigma = 4.1
epsilon = 1.7
!Box length with respect to the axis
lx = 15
ly = 15
lz = 15
do i=1,12
seed(i)=i+3
end do
!generate n random numbers for x, y, z
call RANDOM_SEED(PUT = seed)
call random_number(x)
call random_number(y)
call random_number(z)
!convert random numbers into x, y, z coordinates
cx = ((2*x)-1)*(lx*0.5)
cy = ((2*y)-1)*(lx*0.5)
cz = ((2*z)-1)*(lz*0.5)
do j=1,n-1
do k=j+1,n
dx = ABS((cx(j) - cx(k)))
LJx = 4 * epsilon * ((sigma/dx(j))**12 - (sigma/dx(j))**6)
dy = ABS((cy(j) - cy(k)))
LJy = 4 * epsilon * ((sigma/dy(j))**12 - (sigma/dy(j))**6)
dz = ABS((cz(j) - cz(k)))
LJz = 4 * epsilon * ((sigma/dz(j))**12 - (sigma/dz(j))**6)
end do
end do
print*, dx
end program energytot
答案 0 :(得分:1)
你的问题究竟是什么?你希望你的代码做什么,以及它做了什么呢?
如果您对最终的打印声明print*, dx
有疑问,请尝试以下方法:
print *, 'dx = '
do i = 1, n * (n + 1) / 2
print *, dx(i)
end do
似乎dx太大而无法在没有循环的情况下打印。
此外,您似乎重复将数组dx(以及循环中的其他数组)分配给单个值。试试这个:
i = 0
do j=1,n-1
do k=j+1,n
i = i + 1
dx(i) = ABS((cx(j) - cx(k)))
end do
end do
这样,每个值cx(j) - cx(k)
都会保存到dx
的其他元素,而不是覆盖以前保存的值。
答案 1 :(得分:0)
我的新代码是这样的:
program energytot
implicit none
integer, parameter :: n = 6
integer :: i, j, k, seed(12)
double precision :: sigma, r, epsilon, lx, ly, lz, etot, pot, rx, ry, rz
double precision, dimension(n) :: x, y, z, cx, cy, cz
sigma = 4.1
epsilon = 1.7
etot=0
!Box length with respect to the axis
lx = 15
ly = 15
lz = 15
do i=1,12
seed(i)=i+90
end do
!generate n random numbers for x, y, z
call RANDOM_SEED(PUT = seed)
call random_number(x)
call random_number(y)
call random_number(z)
!convert random numbers into x, y, z coordinates
cx = ((2*x)-1)*(lx*0.5)
cy = ((2*y)-1)*(lx*0.5)
cz = ((2*z)-1)*(lz*0.5)
do j=1,n-1
do k=j+1,n
rx = (cx(j) - cx(k))
ry = (cy(j) - cy(k))
rz = (cz(j) - cz(k))
!Apply minimum image convention
rx=rx-lx*anint(rx/lx)
ry=ry-ly*anint(ry/ly)
rz=rz-lz*anint(rz/lz)
r=sqrt(rx**2+ry**2+rz**2)
pot=4 * epsilon * ((sigma/r)**12 - (sigma/r)**6)
print*,pot
etot=etot+pot
end do
end do
print*, etot
end program energytot