我的代码需要很长时间才能运行,因此我一直在调查Python的多处理库以加快速度。我的代码还有一些通过PyOpenCL利用GPU的步骤。问题是,如果我设置多个进程同时运行,它们最终都会尝试同时使用GPU,这通常会导致一个或多个进程抛出异常并退出。
为了解决这个问题,我错开了每个流程的开始,这样他们就不太可能碰到彼此:
process_list = []
num_procs = 4
# break data into chunks so each process gets it's own chunk of the data
data_chunks = chunks(data,num_procs)
for chunk in data_chunks:
if len(chunk) == 0:
continue
# Instantiates the process
p = multiprocessing.Process(target=test, args=(arg1,arg2))
# Sticks the thread in a list so that it remains accessible
process_list.append(p)
# Start threads
j = 1
for process in process_list:
print('\nStarting process %i' % j)
process.start()
time.sleep(5)
j += 1
for process in process_list:
process.join()
我还在调用GPU的函数周围包含一个try except循环,这样如果两个进程同时尝试访问它,那么没有访问权限的人将等待几秒钟并尝试再次:
wait = 2
n = 0
while True:
try:
gpu_out = GPU_Obj.GPU_fn(params)
except:
time.sleep(wait)
print('\n Waiting for GPU memory...')
n += 1
if n == 5:
raise Exception('Tried and failed %i times to allocate memory for opencl kernel.' % n)
continue
break
这种解决方法非常笨重,即使它在大多数情况下都有效,但是进程偶尔会抛出异常,我觉得应该使用multiprocessing.queue
或类似的东西来提供更有效/更优雅的解决方案。但是,我不确定如何将其与PyOpenCL集成以进行GPU访问。
答案 0 :(得分:4)
听起来您可以使用multiprocessing.Lock
来同步对GPU的访问:
data_chunks = chunks(data,num_procs)
lock = multiprocessing.Lock()
for chunk in data_chunks:
if len(chunk) == 0:
continue
# Instantiates the process
p = multiprocessing.Process(target=test, args=(arg1,arg2, lock))
...
然后,在您访问GPU的test
内:
with lock: # Only one process will be allowed in this block at a time.
gpu_out = GPU_Obj.GPU_fn(params)
修改强>
要使用游泳池,您可以这样做:
# At global scope
lock = None
def init(_lock):
global lock
lock = _lock
data_chunks = chunks(data,num_procs)
lock = multiprocessing.Lock()
for chunk in data_chunks:
if len(chunk) == 0:
continue
# Instantiates the process
p = multiprocessing.Pool(initializer=init, initargs=(lock,))
p.apply(test, args=(arg1, arg2))
...
或者:
data_chunks = chunks(data,num_procs)
m = multiprocessing.Manager()
lock = m.Lock()
for chunk in data_chunks:
if len(chunk) == 0:
continue
# Instantiates the process
p = multiprocessing.Pool()
p.apply(test, args=(arg1, arg2, lock))